Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 35(3): 174-88, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21704264

ABSTRACT

Protein structure comparison by pairwise alignment is commonly used to identify highly similar substructures in pairs of proteins and provide a measure of structural similarity based on the size and geometric similarity of the match. These scores are routinely applied in analyses of protein fold space under the assumption that high statistical significance is equivalent to a meaningful relationship, however the truth of this assumption has previously been difficult to test since there is a lack of automated methods which do not rely on the same underlying principles. As a resolution to this we present a method based on the use of topological descriptions of global protein structure, providing an independent means to assess the ability of structural alignment to maintain meaningful structural correspondances on a large scale. Using a large set of decoys of specified global fold we benchmark three widely used methods for structure comparison, SAP, TM-align and DALI, and test the degree to which this assumption is justified for these methods. Application of a topological edit distance measure to provide a scale of the degree of fold change shows that while there is a broad correlation between high structural alignment scores and low edit distances there remain many pairs of highly significant score which differ by core strand swaps and therefore are structurally different on a global level. Possible causes of this problem and its meaning for present assessments of protein fold space are discussed.


Subject(s)
Computational Biology , Protein Folding , Proteins/chemistry , Algorithms , Benchmarking , Computer Simulation , Databases, Protein , Protein Structure, Secondary , Proteins/genetics
2.
Structure ; 17(9): 1244-52, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19748345

ABSTRACT

We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter.


Subject(s)
Molecular Probes , Protein Folding , Proteins/chemistry , Models, Molecular
3.
BMC Bioinformatics ; 6: 52, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15762993

ABSTRACT

BACKGROUND: Normal mode analysis (NMA) has become the method of choice to investigate the slowest motions in macromolecular systems. NMA is especially useful for large biomolecular assemblies, such as transmembrane channels or virus capsids. NMA relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes) describe the largest movements in a protein and are the ones that are functionally relevant. RESULTS: We developed a web-based server to perform normal modes calculations and different types of analyses. Starting from a structure file provided by the user in the PDB format, the server calculates the normal modes and subsequently offers the user a series of automated calculations; normalized squared atomic displacements, vector field representation and animation of the first six vibrational modes. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to analyze the results with their favorite software, raw results can also be downloaded. The application is available on http://www.bioinfo.no/tools/normalmodes. We present here the underlying theory, the application architecture and an illustration of its features using a large transmembrane protein as an example. CONCLUSION: We built an efficient and modular web application for normal mode analysis of proteins. Non specialists can easily and rapidly evaluate the degree of flexibility of multi-domain protein assemblies and characterize the large amplitude movements of their domains.


Subject(s)
Computational Biology/methods , Databases, Protein , Proteins/chemistry , Algorithms , Calcium-Transporting ATPases/chemistry , Computer Graphics , Cytoplasm/metabolism , Database Management Systems , Genetic Vectors , Information Storage and Retrieval , Internet , Models, Statistical , Molecular Structure , Nucleic Acids , Peptides , Protein Conformation , Protein Folding , Protein Structure, Tertiary , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Sequence Analysis, Protein , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...