Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621126

ABSTRACT

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Subject(s)
Butterflies , Fires , Animals , Ecosystem , Soil , Forests , Trees , Biodiversity
2.
Insects ; 14(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36661946

ABSTRACT

Population density can affect survival, growth, development time, and adult size and fecundity, which are collectively known as density-dependent effects. Container Aedes larvae often attain high densities in nature, and those densities may be reduced when larval control is applied. We tested the hypothesis that density-dependent effects on survival are common and strong in nature and could result in maximal adult production at intermediate densities for Aedes aegypti, Aedes albopictus, and Aedes triseriatus. We surveyed naturally occurring densities in field containers, then introduced larvae at a similar range of densities, and censused the containers for survivors. We analyzed the survival-density relationships by nonlinear regressions, which showed that survival-density relationships vary among seasons, sites, and species. For each Aedes species, some sites and times yielded predictions that larval density reduction would yield the same (compensation), or more (overcompensation), adults than no larval density reduction. Thus, larval control targeting these Aedes species cannot always be assumed to yield a reduction in the number of adult mosquitoes. We suggest that mosquito control targeting larvae may be made more effective by: Imposing maximum mortality; targeting populations when larval abundances are low; and knowing the shape of the survival-density response of the target population.

SELECTION OF CITATIONS
SEARCH DETAIL
...