Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38130938

ABSTRACT

Scientific user facilities present a unique set of challenges for image processing due to the large volume of data generated from experiments and simulations. Furthermore, developing and implementing algorithms for real-time processing and analysis while correcting for any artifacts or distortions in images remains a complex task, given the computational requirements of the processing algorithms. In a collaborative effort across multiple Department of Energy national laboratories, the "MLExchange" project is focused on addressing these challenges. MLExchange is a Machine Learning framework deploying interactive web interfaces to enhance and accelerate data analysis. The platform allows users to easily upload, visualize, label, and train networks. The resulting models can be deployed on real data while both results and models could be shared with the scientists. The MLExchange web-based application for image segmentation allows for training, testing, and evaluating multiple machine learning models on hand-labeled tomography data. This environment provides users with an intuitive interface for segmenting images using a variety of machine learning algorithms and deep-learning neural networks. Additionally, these tools have the potential to overcome limitations in traditional image segmentation techniques, particularly for complex and low-contrast images.

2.
Article in English | MEDLINE | ID: mdl-38131031

ABSTRACT

Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.

3.
Commun Biol ; 3(1): 684, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208883

ABSTRACT

Non-invasive and label-free spectral microscopy (spectromicroscopy) techniques can provide quantitative biochemical information complementary to genomic sequencing, transcriptomic profiling, and proteomic analyses. However, spectromicroscopy techniques generate high-dimensional data; acquisition of a single spectral image can range from tens of minutes to hours, depending on the desired spatial resolution and the image size. This substantially limits the timescales of observable transient biological processes. To address this challenge and move spectromicroscopy towards efficient real-time spatiochemical imaging, we developed a grid-less autonomous adaptive sampling method. Our method substantially decreases image acquisition time while increasing sampling density in regions of steeper physico-chemical gradients. When implemented with scanning Fourier Transform infrared spectromicroscopy experiments, this grid-less adaptive sampling approach outperformed standard uniform grid sampling in a two-component chemical model system and in a complex biological sample, Caenorhabditis elegans. We quantitatively and qualitatively assess the efficiency of data acquisition using performance metrics and multivariate infrared spectral analysis, respectively.


Subject(s)
Hyperspectral Imaging/methods , Image Processing, Computer-Assisted/methods , Animals , Caenorhabditis elegans/metabolism , Databases, Factual , Gene Expression Regulation , Models, Biological , Time Factors
4.
Biomed Spectrosc Imaging ; 2(4): 301-315, 2013.
Article in English | MEDLINE | ID: mdl-26500847

ABSTRACT

Recent research findings correlate an increased risk for dieases such as diabetes, macular degeneration and cardiovascular disease (CVD) with diets that rapidly raise the blood sugar levels; these diets are known as high glycemic index (GI) diets which include white breads, sodas and sweet deserts. Lower glycemia diets are usually rich in fruits, non-starchy vegetables and whole grain products. The goal of our study was to compare and contrast the effects of a low vs. high glycemic diet using the biochemical composition and microstructure of the heart. The improved spatial resolution and signal-to-noise for SR-FTIR obtained through the coupling of the bright synchrotron infrared photon source to an infrared spectral microscope enabled the molecular-level observation of diet-related changes within unfixed fresh frozen histologic sections of mouse cardiac tissue. High and low glycemic index (GI) diets were started at the age of five-months and continued for one year, with the diets only differing in their starch distribution (high GI diet = 100% amylopectin versus low GI diet = 30% amylopectin/70% amylose). Serial cryosections of cardiac tissue for SR-FTIR imaging alternated with adjacent hematoxylin and eosin (H&E) stained sections allowed not only fine-scale chemical analyses of glycogen and glycolipid accumulation along a vein as well as protein glycation hotspots co-localizing with collagen cold spots but also the tracking of morphological differences occurring in tandem with these chemical changes. As a result of the bright synchrotron infrared photon source coupling, we were able to provide significant molecular evidence for a positive correlation between protein glycation and collagen degradation in our mouse model. Our results bring a new insight not only to the effects of long-term GI dietary practices of the public but also to the molecular and chemical foundation behind the cardiovascular disease pathogenesis commonly seen in diabetic patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...