Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28972182

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Subject(s)
Lung Neoplasms/metabolism , Lung/metabolism , Lymphangioleiomyomatosis/metabolism , Mutation , Neoplasm Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Angiomyolipoma/drug therapy , Angiomyolipoma/genetics , Angiomyolipoma/metabolism , Angiomyolipoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lung/drug effects , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/pathology , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , RNA Interference , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Burden/drug effects , Tumor Suppressor Proteins/genetics , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics
2.
J Biol Chem ; 291(29): 15029-45, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27151212

ABSTRACT

Urokinase-type plasminogen activator (uPA) regulates angiogenesis and vascular permeability through proteolytic degradation of extracellular matrix and intracellular signaling initiated upon its binding to uPAR/CD87 and other cell surface receptors. Here, we describe an additional mechanism by which uPA regulates angiogenesis. Ex vivo VEGF-induced vascular sprouting from Matrigel-embedded aortic rings isolated from uPA knock-out (uPA(-/-)) mice was impaired compared with vessels emanating from wild-type mice. Endothelial cells isolated from uPA(-/-) mice show less proliferation and migration in response to VEGF than their wild type counterparts or uPA(-/-) endothelial cells in which expression of wild type uPA had been restored. We reported previously that uPA is transported from cell surface receptors to nuclei through a mechanism that requires its kringle domain. Intranuclear uPA modulates gene transcription by binding to a subset of transcription factors. Here we report that wild type single-chain uPA, but not uPA variants incapable of nuclear transport, increases the expression of cell surface VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) by translocating to the nuclei of ECs. Intranuclear single-chain uPA binds directly to and interferes with the function of the transcription factor hematopoietically expressed homeodomain protein or proline-rich homeodomain protein (HHEX/PRH), which thereby lose their physiologic capacity to repress the activity of vehgr1 and vegfr2 gene promoters. These studies identify uPA-dependent de-repression of vegfr1 and vegfr2 gene transcription through binding to HHEX/PRH as a novel mechanism by which uPA mediates the pro-angiogenic effects of VEGF and identifies a potential new target for control of pathologic angiogenesis.


Subject(s)
Homeodomain Proteins/metabolism , Neovascularization, Physiologic , Transcription Factors/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , HEK293 Cells , Humans , K562 Cells , Mice, Knockout , Neovascularization, Physiologic/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...