Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dysphagia ; 30(1): 47-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25270532

ABSTRACT

The purpose was to determine the effect of bilateral superior laryngeal nerve (SLN) lesion on swallowing threshold volume and the occurrence of aspiration, using a novel measurement technique for videofluoroscopic swallowing studies (VFSS) in infant pigs. We used a novel radiographic phantom to assess volume of the milk containing barium from fluoroscopy. The custom made phantom was firstly calibrated by comparing image intensity of the phantom with known cylinder depths. Secondly, known volume pouches of milk in a pig cadaver were compared to volumes calculated with the phantom. Using these standards, we calculated the volume of milk in the valleculae, esophagus and larynx, for 205 feeding sequences from four infant pigs feeding before and after had bilateral SLN lesions. Swallow safety was assessed using the tested and validated IMPAS (Dysphagia 28(2):178-187, 2013). The log-linear correlation between image intensity values from the phantom filled with barium milk and the known phantom cylinder depths was strong (R (2) > 0.95), as was the calculated volumes of the barium milk pouches. The threshold volume of bolus in the valleculae during feeding was significantly larger after bilateral SLN lesion than in control swallows (p < 0.001). The IMPAS score increased in the lesioned swallows relative to the controls, indicating substantially impaired swallowing (p < 0.001). Bilateral SLN lesion dramatically increased the aspiration incidence and the threshold volume of bolus in valleculae. The use of this phantom permits quantification of the aspirated volume of fluid, allowing for more accurate 3D volume estimation from 2D X-ray in VFSS.


Subject(s)
Deglutition , Fluoroscopy/methods , Larynx/physiology , Animals , Calibration , Female , Fluoroscopy/instrumentation , Larynx/anatomy & histology , Swine , Video Recording
2.
Dysphagia ; 29(4): 475-82, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24839189

ABSTRACT

Feeding is a rhythmic behavior that consists of several component cycle types. How the timing of these cycles changes over a complete feeding sequence is not well known. To test the hypothesis that cycle frequency/duration changes as a function of time spent feeding, we examined complete feeding sequences in six infant pigs, using EMG of mylohyoid and thyrohyoid as cycle markers. We measured the instantaneous frequency of sucking and of swallowing cycles in 19 sequences. Each sequence contained three qualitatively distinctive phases of sucking frequency. Phase 1 started with cycles at a very high frequency and quickly dropped to a more constant level with low variation, which characterized phase 2. Phase 3 had a steady level of frequency but was interspersed with a number of high- or low-frequency cycles. Each phase differed from the others in patterns of within-phase variation and among-phase variation. Phase 2 had the least variation, and phase 3 had the largest range of frequencies. The number of sucks per swallow also differed among phases. These patterns, which characterize normative feeding, could indicate a physiologic basis in satiation. In human infant clinical studies, where data collection is often limited, these results indicated the utility of collecting data in different phases. Finally, these results can be used as a template or pattern with which to assess clinically compromised infants.


Subject(s)
Deglutition/physiology , Neck Muscles/physiology , Sucking Behavior/physiology , Animals , Electromyography , Follow-Up Studies , Swine , Time Factors
3.
Laryngoscope ; 124(2): 436-45, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23686446

ABSTRACT

OBJECTIVES/HYPOTHESIS: Abnormal kinematics during swallowing can result in aspiration, which may become life threatening. We tested the role of palatal sensation in the motor control of pharyngeal swallow in infants. STUDY DESIGN: In eight infant pigs, we reduced palatal sensation using local anesthesia (PLA) and measured the impact on swallowing kinematics and airway protection. METHODS: The pigs drank milk containing barium while we simultaneously recorded videofluoroscopy and electromyography from fine wire bipolar electrodes in several hyolaryngeal muscles. We compared these results to control feedings and feedings following palatal saline injections. RESULTS: After PLA, four pigs had extreme jaw movements and abnormal tongue movement uncharacteristic of sucking. For this reason, we evaluated differences between these group B pigs and the others that could suck normally after PLA (group A). In the four group A pigs, after PLA there was less hyoid elevation (P < .001) but normal jaw and tongue movements. In group B, in addition to greater jaw movement (P < .001) there was more anterior and superior tongue movement (P < .001) and a larger range of hyoid movement (P < .001). CONCLUSIONS: The airway was protected in all of the pigs, indicating that these changes allowed successful adaptation to the reduction in palatal sensation. However, the oral and pharyngeal phases of the swallow were functionally linked, and trigeminal sensation influenced the motor control of the pharyngeal swallow. LEVEL OF EVIDENCE: N/A.


Subject(s)
Anesthesia, Local , Deglutition/physiology , Palate , Pharynx/physiology , Age Factors , Animals , Biomechanical Phenomena , Sus scrofa
4.
Laryngoscope ; 123(8): 1942-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23670486

ABSTRACT

OBJECTIVES/HYPOTHESIS: The superior laryngeal nerve (SLN) is the major sensory nerve for the upper larynx. Damage to this nerve impacts successful swallowing. The first aim of the study was to assess the effect of unilateral SLN lesion on the threshold volume sufficient to elicit swallowing in an intact pig model; this volume was defined radiographically as the maximum bolus area visible in lateral view. The second aim was to determine if a difference existed between ipsilateral and contralateral function as a result of unilateral sensory loss, measured as the radiologic density of fluid seen in the valleculae. Finally, we determined whether there was a relationship between the threshold volume and the occurrence of aspiration after a unilateral SLN lesion. STUDY DESIGN: Repeated measures animal study. METHODS: Four female infant pigs underwent unilateral SLN lesion surgery. The maximum vallecular bolus area in lateral view and the relative vallecular density on each side in the dorsoventral view were obtained from videofluoroscopic recordings in both the prelesion control and postlesion experimental states. RESULTS: In lateral view, the lesioned group had a larger maximum bolus area than the control group (P < .001). Although occasional left-right asymmetry in the dorsoventral view was observed, the vallecular densities were, on average, equal on both the left (intact) and right (lesioned) sides (P > .05). A bigger maximum bolus area did not predict aspiration in the lesioned group (P > .05). CONCLUSIONS: Unilateral SLN lesions increased the swallowing threshold volume symmetrically in right and left valleculae, but the increased threshold may not be the main mechanism for the occurrence of aspiration.


Subject(s)
Deglutition/physiology , Laryngeal Nerves/physiology , Larynx/physiology , Animals , Female , Fluoroscopy , Laryngeal Nerves/diagnostic imaging , Larynx/diagnostic imaging , Swine , Video Recording
5.
Dysphagia ; 28(3): 404-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23417250

ABSTRACT

We tested two hypotheses relating to the sensory deficit that follows a unilateral superior laryngeal nerve (SLN) lesion in an infant animal model. We hypothesized that it would result in (1) a higher incidence of aspiration and (2) temporal changes in sucking and swallowing. We ligated the right-side SLN in six 2-3-week-old female pigs. Using videofluoroscopy, we recorded swallows in the same pre- and post-lesion infant pigs. We analyzed the incidence of aspiration and the duration and latency of suck and swallow cycles. After unilateral SLN lesioning, the incidence of silent aspiration during swallowing increased from 0.7 to 41.5%. The durations of the suck containing the swallow, the suck immediately following the swallow, and the swallow itself were significantly longer in the post-lesion swallows, although the suck prior to the swallow was not different. The interval between the start of the suck containing a swallow and the subsequent epiglottal movement was longer in the post-lesion swallows. The number of sucks between swallows was significantly greater in post-lesion swallows compared to pre-lesion swallows. Unilateral SLN lesion increased the incidence of aspiration and changed the temporal relationships between sucking and swallowing. The longer transit time and the temporal coordinative dysfunction between suck and swallow cycles may contribute to aspiration. These results suggest that swallow dysfunction and silent aspiration are common and potentially overlooked sequelae of unilateral SLN injury. This validated animal model of aspiration has the potential for further dysphagia studies.


Subject(s)
Deglutition Disorders/physiopathology , Deglutition/physiology , Laryngeal Nerve Injuries/physiopathology , Sucking Behavior/physiology , Animals , Deglutition Disorders/etiology , Disease Models, Animal , Female , Humans , Laryngeal Nerve Injuries/complications , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...