Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 19(2): 575-9, 2003.
Article in English | MEDLINE | ID: mdl-12675603

ABSTRACT

This paper examines affinity chromatography (AC) as an alternative tool for the determination of protein-ligand interactions for the particular case in which the ligand is the same protein. The methodology is less labor-intensive and more sample-efficient than traditional methods used to measure the second virial coefficient (B(22)), a parameter commonly used to evaluate protein-protein interactions. The chromatographic capacity factor (k') was studied for lysozyme and equine serum albumin for a wide range of experimental solution conditions such as crystallizing agent concentration, protein concentration and pH. Parallel experiments using AC to determine k' and static light scattering (SLS) to determine B(22) showed that the two parameters were highly correlated. Two different column volumes ( approximately 1 and approximately 0.1 mL) were tested and gave essentially the same values for k', showing the feasibility of miniaturization.


Subject(s)
Chromatography, Affinity/instrumentation , Chromatography, Affinity/methods , Chymotrypsinogen/chemistry , Muramidase/chemistry , Proteins/chemistry , Dimerization , Equipment Failure Analysis , Feasibility Studies , Hydrogen-Ion Concentration , Ligands , Macromolecular Substances , Miniaturization , Protein Binding , Solutions
2.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1544-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12351858

ABSTRACT

The Haas - Drenth - Wilson (HDW) (Haas et al., 1999) theoretical model was used to correlate osmotic second virial coefficient (B) values with solubility (S) values for equine serum albumin (ESA) and ovalbumin for corresponding solution conditions. The best fit from the theoretical model was compared to experimental S versus B data. B values were experimentally measured using static light scattering. Solubilities of ESA were estimated using a sitting drop method. When the experimental data for S versus B were plotted, an excellent fit for ESA was obtained according to the HDW model. The results showed that the coordination number (z) in the crystal lattice was 6, and the adjustable parameter (A) was 0.072. For ovalbumin, previously reported solubility data in aqueous ammonium sulfate solutions were utilized. The solubility data for ovalbumin were correlated with the measured B values obtained in our laboratory. The resulting best fit from the HDW model showed that z = 6 and A = 0.084.


Subject(s)
Ovalbumin/chemistry , Serum Albumin/chemistry , Ammonium Sulfate , Animals , Anisotropy , Crystallization , Horses , Light , Models, Chemical , Molecular Weight , Osmosis , Scattering, Radiation , Solubility
3.
J Endotoxin Res ; 8(1): 27-38, 2002.
Article in English | MEDLINE | ID: mdl-11981443

ABSTRACT

Actinobacillus pleuropneumoniae is an important pathogen of swine. Lipopolysaccharide (LPS) has been identified as the major adhesin of A. pleuropneumoniae and it is involved in adherence to porcine respiratory tract cells. We previously generated seven rough LPS mutants of A. pleuropneumoniae serotype 1 by using a mini-Tn10 transposon mutagenesis system [Rioux S, Galarneau C, Harel J et al. Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. Can J Microbiol 1999; 45: 1017-1026]. The purpose of the present study was to characterize these mutants in order to learn more about LPS O-antigen biosynthesis genes and their organization in A. pleuropneumoniae, and to determine the surface properties and virulence in pigs of these isogenic mutants. By mini-Tn10 insertions in rough mutants, four putative genes (ORF12, ORF16, ORF17, and ORF18) involved in O-antigen biosynthesis in A. pleuropneumoniae serotype 1 were found within a region of 18 ORFs. This region is homologous to the gene cluster of serotype-specific O-polysaccharide biosynthesis from A. actinomycetemcomitans strain Y4 (serotype b). Two mutants showed homology to a protein with identity to glycosyltransferases (ORF12); two others had the mini-Tn10 insertion localized in genes encoding for two distinct proteins with identity to rhamnosyltransferases (ORF16 and ORF17) and three showed homology to a protein which is known to initiate polysaccharide synthesis (ORF18). These four ORFs were also present in A. pleuropneumoniae serotypes 9 and 11 that express an O-antigen that serologically cross-reacts with serotype 1. Evaluation of some biological properties of rough mutants seems to indicate that the absence of O-chains does not appear to have an influence on the virulence of the bacteria in pigs and on the overall surface hydrophobicity, charge and hemoglobin-binding activity, or on LAL activation. An acapsular mutant was included in the present study in order to compare the influence of O-chains and capsule polysaccharides on different cell surface properties. Our data suggest that capsular polysaccharides and not O-chains polysaccharides have a major influence on surface properties of A. pleuropneumoniae serotype 1 and its virulence in pigs.


Subject(s)
Actinobacillus pleuropneumoniae/genetics , Genes, Bacterial , O Antigens/biosynthesis , O Antigens/genetics , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Bacterial Capsules/genetics , Bacterial Capsules/immunology , DNA, Bacterial/analysis , Molecular Sequence Data , Mutagenesis, Insertional , Polymerase Chain Reaction/veterinary , Serotyping/veterinary , Swine
4.
Infect Immun ; 70(1): 412-5, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11748210

ABSTRACT

Nonspecific interactions related to physicochemical properties of bacterial cell surfaces, such as hydrophobicity and electrostatic charge, are known to have important roles in bacterium-host cell encounters. Streptococcus pneumoniae (pneumococcus) expresses multiple, surface-exposed, choline-binding proteins (CBPs) which have been associated with adhesion and virulence. The purpose of this study was to determine the contribution of CBPs to the surface characteristics of pneumococci and, consequently, to learn how CBPs may affect nonspecific interactions with host cells. Pneumococcal strains lacking CBPs were derived by adapting bacteria to a defined medium that substituted ethanolamine for choline. Such strains do not anchor CBPs to their surface. Cell surface hydrophobicity was tested for the wild-type and adapted strains by using a biphasic hydrocarbon adherence assay, and electrostatic charge was determined by zeta potential measurement. Adherence of pneumococci to human-derived cells was assessed by fluorescence-activated cell sorter analysis. Strains lacking both capsule and CBPs were significantly more hydrophobic than nonencapsulated strains with a normal complement of CBPs. The effect of CBPs on hydrophobicity was attenuated in the presence of capsule. Removal of CBPs conferred a greater electronegative net surface charge than that which cells with CBPs possessed, regardless of the presence of capsule. Strains that lack CBPs were poorly adherent to human monocyte-like cells when compared with wild-type bacteria with a full complement of CBPs. These results suggest that CBPs contribute significantly to the hydrophobic and electrostatic surface characteristics of pneumococci and may facilitate adherence to host cells partially through nonspecific, physicochemical interactions.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Choline/metabolism , Bacterial Adhesion/physiology , Cell Membrane/metabolism , Cell Membrane/physiology , Hydrocarbons/metabolism , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...