Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Infect Immun ; 88(11)2020 10 19.
Article in English | MEDLINE | ID: mdl-32839188

ABSTRACT

Recent efforts to develop an enterotoxigenic Escherichia coli (ETEC) vaccine have focused on the antigenically conserved tip adhesins of colonization factors. We showed previously that intranasal immunization with dsc19CfaE, a soluble variant of the in cis donor strand-complemented tip adhesin of a colonization factor of the class 5 family (CFA/I) fimbria, is highly immunogenic and protects against oral challenge with CFA/I-positive (CFA/I+) ETEC strain H10407 in the Aotus nancymaae nonhuman primate. We also reported a cholera toxin (CT)-like chimera (called dsc19CfaE-CTA2/CTB) in which the CTA1 domain of CT was replaced by dsc19CfaE that was strongly immunogenic when administered intranasally or orogastrically in mice. Here, we evaluate the immunogenicity and protective efficacy (PE) of a refined and more stable chimera comprised of a pentameric B subunit of ETEC heat-labile toxin (LTB) in lieu of the CTB pentamer and a donor strand truncation (dsc14) of CfaE. The refined chimera, dsc14CfaE-sCTA2/LTB, was highly immunogenic in mice when administered intranasally or intradermally, eliciting serum and fecal antibody responses against CfaE and LTB, as well as strong hemagglutination inhibition titers, a surrogate for neutralization of intestinal adhesion mediated by CfaE. Moreover, the chimera was safe and highly immunogenic when administered intradermally to guinea pigs. In A. nancymaae, intradermal (i.d.) immunization with chimera plus single-mutant heat-labile toxin [LT(R192G)] elicited strong serum anti-CfaE and anti-LTB antibody responses and conferred significant reduction of diarrhea compared to phosphate-buffered saline (PBS) controls (PE = 84.1%; P < 0.02). These data support the further evaluation of dsc14CfaE-sCTA2/LTB as an ETEC vaccine in humans.


Subject(s)
Adhesins, Escherichia coli/immunology , Cholera Toxin/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Animals , Aotidae , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/prevention & control , Guinea Pigs , Mice , Recombinant Fusion Proteins/immunology
2.
PLoS One ; 15(3): e0230138, 2020.
Article in English | MEDLINE | ID: mdl-32176708

ABSTRACT

Surface-expressed colonization factors and their subunits are promising candidates for inclusion into a multivalent vaccine targeting enterotoxigenic Escherichia coli (ETEC), a leading cause of acute bacterial diarrhea in developing regions. However, soluble antigens are often poorly immunogenic in the absence of an adjuvant. We show here that the serum immune response to CfaE, the adhesin of the ETEC colonization factor CFA/I, can be enhanced in BALB/c mice by immunization with a chimeric antigen containing CfaE and pentameric cholera toxin B subunit (CTB) of cholera toxin from Vibrio cholerae. We constructed this antigen by replacing the coding sequence for the A1 domain of the cholera toxin A subunit (CTA) with the sequence of donor strand complemented CfaE (dscCfaE) within the cholera toxin operon, resulting in a dscCfaE-CTA2 fusion. After expression, via non-covalent interactions between CTA2 and CTB, the fusion and CTB polypeptides assemble into a complex containing a single dscCfaE-CTA2 protein bound to pentameric CTB (dscCfaE-CTA2/CTB). This holotoxin-like chimera retained the GM1 ganglioside binding activity of CTB, as well as the ability of CfaE to mediate the agglutination of bovine red blood cells when adsorbed to polystyrene beads. When administered intranasally to mice, the presence of CTB in the chimera significantly increased the serum immune response to CfaE compared to dscCfaE alone, stimulating a response similar to that obtained with a matched admixture of dscCfaE and CTB. However, by the orogastric route, immunization with the chimera elicited a superior functional immune response compared to an equivalent admixture of dscCfaE and CTB, supporting further investigation of the chimera as an ETEC vaccine candidate.


Subject(s)
Cholera Toxin , Enterotoxigenic Escherichia coli , Escherichia coli Vaccines , Fimbriae Proteins , Recombinant Fusion Proteins , Animals , Female , Mice , Adhesins, Bacterial/immunology , Adhesins, Bacterial/metabolism , Adjuvants, Immunologic/administration & dosage , Cholera Toxin/genetics , Cholera Toxin/immunology , Cholera Toxin/metabolism , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Vaccines/immunology , Fimbriae Proteins/genetics , Fimbriae Proteins/immunology , Fimbriae Proteins/metabolism , Immunization , Immunogenicity, Vaccine , Mice, Inbred BALB C , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
3.
Toxins (Basel) ; 7(3): 919-35, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25793724

ABSTRACT

Pathogenesis of cholera diarrhea requires cholera toxin (CT)-mediated adenosine diphosphate (ADP)-ribosylation of stimulatory G protein (Gsα) in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP) differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging "active-site" and "activation" loops in inactive CTA1) and an ADP ribosylating turn-turn (ARTT) motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino)-guanidine (DEABAG), a small substrate predicted to fit into the CTA1 active site). Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα.


Subject(s)
Cholera Toxin/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Animals , Catalytic Domain , Cell Line , Cholera Toxin/metabolism , DNA Mutational Analysis , Genetic Variation , Mice , Models, Molecular , Protein Binding
4.
Traffic ; 16(6): 572-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25690058

ABSTRACT

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Microtubules/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cholera Toxin/metabolism , Clathrin/metabolism , Dyneins/metabolism , HeLa Cells , Humans , Protein Binding , Receptors, Transferrin/metabolism
5.
PLoS Negl Trop Dis ; 8(12): e3356, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474636

ABSTRACT

Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.


Subject(s)
Cholera Toxin/immunology , Cholera Vaccines/immunology , Cholera/prevention & control , Fimbriae Proteins/immunology , Fimbriae, Bacterial/immunology , Recombinant Fusion Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Bacterial/analysis , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Cholera/immunology , Cholera Toxin/genetics , Cholera Vaccines/administration & dosage , Cholera Vaccines/chemistry , Disease Models, Animal , Feces/chemistry , Female , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Mice , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
6.
Mol Microbiol ; 94(4): 898-912, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25257027

ABSTRACT

The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells.


Subject(s)
ADP-Ribosylation Factors/metabolism , Cholera Toxin/metabolism , Protein Folding , ADP-Ribosylation Factor 6 , Allosteric Regulation , Cholera Toxin/chemistry , Membrane Microdomains/metabolism , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Temperature
7.
PLoS One ; 8(2): e57269, 2013.
Article in English | MEDLINE | ID: mdl-23468950

ABSTRACT

Cholera toxin (CT) is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB) contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP) with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN), IP, and subcutaneously (SC). Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64-100% survival). Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.


Subject(s)
Cholera Toxin/administration & dosage , Cholera Vaccines/administration & dosage , Cholera/prevention & control , Disease Models, Animal , Animals , Animals, Suckling , Cholera Toxin/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice
8.
mBio ; 3(6)2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23111873

ABSTRACT

Cholera toxin (CT) from Vibrio cholerae is responsible for the majority of the symptoms of the diarrheal disease cholera. CT is a heterohexameric protein complex with a 240-residue A subunit and a pentameric B subunit of identical 103-residue B polypeptides. The A subunit is proteolytically cleaved within a disulfide-linked loop to generate the A1 and A2 fragments. The B subunit of wild-type (wt) CT binds 5 cell surface ganglioside GM(1) (GM(1)) molecules, and the toxin-GM(1) complex traffics from the plasma membrane (PM) retrograde through endosomes and the Golgi apparatus to the endoplasmic reticulum (ER). From the ER, the enzymatic A1 fragment retrotranslocates to the cytosol to cause disease. Clustering of GM(1) by multivalent toxin binding can structurally remodel cell membranes in ways that may assist toxin uptake and retrograde trafficking. We have recently found, however, that CT may traffic from the PM to the ER by exploiting an endogenous glycosphingolipid pathway (A. A. Wolf et al., Infect. Immun. 76:1476-1484, 2008, and D. J. F. Chinnapen et al., Dev. Cell 23:573-586, 2012), suggesting that multivalent binding to GM(1) is dispensable. Here we formally tested this idea by creating homogenous chimeric holotoxins with defined numbers of native GM(1) binding sites from zero (nonbinding) to five (wild type). We found that a single GM(1) binding site is sufficient for activity of the holotoxin. Therefore, remodeling of cell membranes by mechanisms that involve multivalent binding of toxin to GM(1) receptors is not essential for toxicity of CT. Through multivalent binding to its lipid receptor, cholera toxin (CT) can remodel cell membranes in ways that may assist host cell invasion. We recently found that CT variants which bind no more than 2 receptor molecules do exhibit toxicity, suggesting that CT may be able to enter cells by coopting an endogenous lipid sorting pathway without clustering receptors. We tested this idea directly by using purified variants of CT with zero to five functional receptor-binding sites (BS). One BS enabled CT to intoxicate cells, supporting the conclusion that CT can enter cells by coopting an endogenous lipid-sorting pathway. Although multivalent receptor binding is not essential, it does increase CT toxicity. These findings suggest that achieving higher receptor binding avidity or affecting membrane dynamics by lipid clustering and membrane remodeling may be driving forces for evolution of AB(5) subunit toxins that can bind multivalently to cell membrane lipid receptors.


Subject(s)
Cholera Toxin/metabolism , Endocytosis , G(M1) Ganglioside/metabolism , Animals , Binding Sites , Cell Line , Cholera Toxin/genetics , Humans , Mice , Protein Binding , Protein Transport
9.
PLoS One ; 7(8): e42434, 2012.
Article in English | MEDLINE | ID: mdl-22879984

ABSTRACT

The secreted colonization factor, TcpF, which is produced by Vibrio cholerae 01 and 0139, has generated interest as a potential protective antigen in the development of a subunit vaccine against cholera. This study evaluated immunogenicity/protective efficacy of a TcpF holotoxin-like chimera (TcpF-A2-CTB) following intraperitoneal immunization compared to TcpF alone, a TcpF+CTB mixture, or CTB alone. Immunization with the TcpF-A2-CTB chimera elicited significantly greater amounts of anti-TcpF IgG than immunization with the other antigens (P<0.05). Protective efficacy was measured using 6-day-old pups reared from immunized dams and orogastrically challenged with a lethal dose of El Tor V. cholerae 01 Inaba strain N16961. Protection from death, and weight loss analysis at 24 and 48 hours post-infection demonstrated that immunization with TcpF alone was poorly protective. However, immunization with TcpF+CTB was highly protective and showed a trend toward greater protection than immunization with CTB alone (82% vs 64% survival). Immunization with the TcpF-A2-CTB chimera demonstrated less protection (50% survival) than immunization with the TcpF+CTB mixture. The TcpF-A2-CTB chimera used for this study contained the heterologous classical CTB variant whereas the El Tor CTB variant (expressed by the challenge strain) was used in the other immunization groups. For all immunization groups that received CTB, quantitative ELISA data demonstrated that the amounts of serum IgG directed against the homologous immunizing CTB antigen was statistically greater than the amount to the heterologous CTB antigen (P≤0.003). This finding provides a likely explanation for the poorer protection observed following immunization with the TcpF-A2-CTB chimera and the relatively high level of protection seen after immunization with homologous CTB alone. Though immunization with TcpF alone provided no protection, the additive protective effect when TcpF was combined with CTB demonstrates its possible value as a component of a multivalent subunit vaccine against Vibrio cholerae 01 and 0139.


Subject(s)
Bacterial Proteins/immunology , Cholera Toxin/immunology , Cholera/immunology , Cholera/prevention & control , Immunization , Recombinant Fusion Proteins/immunology , Transcription Factors/immunology , Animals , Animals, Newborn , Animals, Suckling , Antibodies, Bacterial/immunology , Antibody Formation/immunology , Antibody Specificity/immunology , Bacterial Proteins/administration & dosage , Cholera/blood , Cholera/microbiology , Cholera Toxin/administration & dosage , Cholera Toxin/genetics , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Feces/microbiology , Genotype , Immunoglobulin A/blood , Immunoglobulin A/immunology , Injections, Intraperitoneal , Mice , Promoter Regions, Genetic/genetics , Transcription Factors/administration & dosage , Treatment Outcome , Vibrio cholerae/genetics , Vibrio cholerae/immunology , Weight Loss
10.
Clin Vaccine Immunol ; 19(8): 1304-11, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22739692

ABSTRACT

Young children, older children, and adults develop comparable levels and durations of immunity following cholera. In comparison, young children receiving oral killed cholera vaccines (OCV) develop a lower level and shorter duration of protection than those of older children and adults. The reasons for this are unclear. We investigated OCV-induced memory T cell responses in younger and older children and compared responses to those in children with cholera. We found that patients with cholera developed significant levels of toxin-specific effector memory T cells (T(EM)) with follicular helper and gut-homing characteristics. Older children (6 to 14 years of age) receiving two doses of OCV containing recombinant cholera toxin B subunit (rCTB) had more modest T(EM) responses with follicular helper and gut-homing characteristics, but younger vaccinees (24 to 71 months of age) did not develop T(EM) responses. The T(EM) response correlated positively with subsequent IgG memory B cell responses specific to rCTB in older vaccinees. Cytokine analyses indicated that cholera patients developed significant Th1, Th17, and Th2 responses, while older children receiving vaccine developed more modest increases in Th1 and Th17 cells. Younger vaccinees had no increase in Th1 cells, a decrease in Th17 cells, and an increase in regulatory T (Treg) cells. Our findings suggest that T cell memory responses are markedly diminished in children receiving OCV, especially young children, compared to responses following naturally acquired cholera, and that these differences affect subsequent development of memory B cell responses. These findings may explain the lower efficacy and shorter duration of protection afforded by OCV in young children.


Subject(s)
Cholera Vaccines/immunology , Cholera/immunology , Immunologic Memory , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Vaccination/methods , Adolescent , Adult , Antitoxins/blood , B-Lymphocytes/immunology , Bangladesh , Child , Child, Preschool , Cholera/prevention & control , Cholera Toxin/immunology , Cholera Vaccines/administration & dosage , Cytokines/metabolism , Female , Humans , Immunoglobulin G/blood , Male , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Young Adult
11.
Vet Microbiol ; 159(1-2): 83-9, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22480773

ABSTRACT

Type II heat-labile enterotoxins (LT-II) have been reported in Escherichia coli isolates from humans, animals, food and water samples. The goal here was to determine the specific roles of the antigenically distinguishable LT-IIa and LT-IIb subtypes in pathogenesis and virulence of enterotoxigenic E. coli (ETEC) which has not been previously reported. The prevalence of genes encoding for LT-II was determined by colony blot hybridization in a collection of 1648 E. coli isolates from calves and pigs with diarrhea or other diseases and from healthy animals. Only five isolates hybridized with the LT-II probe and none of these isolates contained genes for other enterotoxins or adhesins associated with porcine or bovine ETEC. Ligated intestinal loops in calves, pigs, and rabbits were used to determine the potential of purified LT-IIa and LT-IIb to cause intestinal secretion. LT-IIa and LT-IIb caused significant secretion in the intestinal loops in calves but not in the intestinal loops of rabbits or pigs. In contrast, neonatal pigs inoculated with isogenic adherent E. coli containing the cloned genes for LT-I, LT-IIa or LT-IIb developed severe watery diarrhea with weight loss that was significantly greater than pigs inoculated with the adherent, non-toxigenic parental or vector only control strains. The results demonstrate that the incidence of LT-II appeared to be very low in porcine and bovine E. coli. However, a potential role for these enterotoxins in E. coli-mediated diarrhea in animals was confirmed because purified LT-IIa and LT-IIb caused fluid secretion in bovine intestinal loops and adherent isogenic strains containing cloned genes encoding for LT-IIa or LT-IIb caused severe diarrhea in neonatal pigs.


Subject(s)
Enterotoxigenic Escherichia coli/pathogenicity , Enterotoxins/metabolism , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Animals , Animals, Newborn , Cattle , Enterotoxigenic Escherichia coli/genetics , Enterotoxins/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Intestines/microbiology , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine
12.
PLoS One ; 7(4): e34591, 2012.
Article in English | MEDLINE | ID: mdl-22514641

ABSTRACT

During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(ß) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.


Subject(s)
Corynebacterium diphtheriae/metabolism , Enterobactin/analogs & derivatives , Siderophores/chemistry , Siderophores/isolation & purification , Biological Transport/drug effects , Citrates/chemistry , Corynebacterium diphtheriae/drug effects , Enterobactin/chemistry , Enterobactin/isolation & purification , Enterobactin/pharmacology , Ferric Compounds/chemistry , Iron/metabolism , Magnetic Resonance Spectroscopy , Ornithine/analogs & derivatives , Ornithine/chemistry , Siderophores/pharmacology , Spectrometry, Mass, Electrospray Ionization
13.
PLoS One ; 7(3): e31709, 2012.
Article in English | MEDLINE | ID: mdl-22438866

ABSTRACT

Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(ß), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2)O(2). In contrast, exposure of C. diphtheriae C7(ß) to H(2)O(2) did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2)O(2) sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(ß), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2)O(2). In the C. diphtheriae C7(ß) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(ß) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2)O(2) resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(ß) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2)O(2).


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase/biosynthesis , Catalase/genetics , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Base Sequence , Corynebacterium diphtheriae/drug effects , Corynebacterium glutamicum/drug effects , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , DNA, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genes, Bacterial , Genetic Complementation Test , Hydrogen Peroxide/pharmacology , Mutation , Oxidative Stress , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Species Specificity
14.
PLoS One ; 7(1): e29898, 2012.
Article in English | MEDLINE | ID: mdl-22242186

ABSTRACT

Some enterotoxigenic Escherichia coli (ETEC) produce a type II heat-labile enterotoxin (LT-II) that activates adenylate cyclase in susceptible cells but is not neutralized by antisera against cholera toxin or type I heat-labile enterotoxin (LT-I). LT-I variants encoded by plasmids in ETEC from humans and pigs have amino acid sequences that are ≥ 95% identical. In contrast, LT-II toxins are chromosomally encoded and are much more diverse. Early studies characterized LT-IIa and LT-IIb variants, but a novel LT-IIc was reported recently. Here we characterized the LT-II encoding loci from 48 additional ETEC isolates. Two encoded LT-IIa, none encoded LT-IIb, and 46 encoded highly related variants of LT-IIc. Phylogenetic analysis indicated that the predicted LT-IIc toxins encoded by these loci could be assigned to 6 subgroups. The loci corresponding to individual toxins within each subgroup had DNA sequences that were more than 99% identical. The LT-IIc subgroups appear to have arisen by multiple recombinational events between progenitor loci encoding LT-IIc1- and LT-IIc3-like variants. All loci from representative isolates encoding the LT-IIa, LT-IIb, and each subgroup of LT-IIc enterotoxins are preceded by highly-related genes that are between 80 and 93% identical to predicted phage lysozyme genes. DNA sequences immediately following the B genes differ considerably between toxin subgroups, but all are most closely related to genomic sequences found in predicted prophages. Together these data suggest that the LT-II loci are inserted into lambdoid type prophages that may or may not be infectious. These findings raise the possibility that production of LT-II enterotoxins by ETEC may be determined by phage conversion and may be activated by induction of prophage, in a manner similar to control of production of Shiga-like toxins by converting phages in isolates of enterohemmorhagic E. coli.


Subject(s)
Bacterial Toxins/metabolism , Enterotoxins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Prophages/metabolism , Amino Acid Sequence , Animals , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Base Sequence , Cattle , Enterotoxins/chemistry , Enterotoxins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Genes, Bacterial/genetics , Genetic Loci/genetics , Genetic Testing , Humans , Molecular Sequence Data , Operon/genetics , Peptides/chemistry , Phylogeny , Polymerase Chain Reaction , Protein Structure, Tertiary , Sequence Homology, Amino Acid
15.
PLoS Pathog ; 7(9): e1002228, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21931548

ABSTRACT

Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-ß topology. N-terminal ß-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD(N0) interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Secretion Systems/genetics , Membrane Proteins/chemistry , Vibrio cholerae/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Gene Expression Regulation, Bacterial , Genes, Bacterial , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Mutation , Peptide Hydrolases/metabolism , Protein Structure, Tertiary , Sequence Analysis, DNA , Two-Hybrid System Techniques , Vibrio cholerae/metabolism
16.
PLoS One ; 6(6): e21523, 2011.
Article in English | MEDLINE | ID: mdl-21720554

ABSTRACT

Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.


Subject(s)
Alanine Racemase/genetics , Anti-Bacterial Agents/pharmacology , Burkholderia mallei/enzymology , Burkholderia pseudomallei/enzymology , Mutation/genetics , Alanine/pharmacology , Alanine Racemase/chemistry , Amino Acid Sequence , Animals , Burkholderia mallei/drug effects , Burkholderia mallei/genetics , Burkholderia mallei/ultrastructure , Burkholderia pseudomallei/drug effects , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/ultrastructure , Gene Deletion , Genes, Bacterial/genetics , Genetic Loci/genetics , Genetic Markers , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/microbiology , Macrophages, Peritoneal/ultrastructure , Mice , Microbial Viability/drug effects , Molecular Sequence Data , Periodic Acid/pharmacology , Plasmids/genetics , Polymerase Chain Reaction , Reproducibility of Results , Sequence Alignment
17.
Biochemistry ; 49(41): 8839-46, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20839789

ABSTRACT

The catalytic A1 subunit of cholera toxin (CTA1) is an ADP-ribosyltransferase with three distinct subdomains: CTA1(1) forms the catalytic core of the toxin, CTA1(2) is an extended linker between CTA1(1) and CTA1(3), and CTA1(3) is a compact globular region. CTA1 crosses the endoplasmic reticulum (ER) membrane to enter the cytosol where it initiates a cytopathic effect. Toxin translocation involves ER-associated degradation (ERAD), a quality control system that exports misfolded proteins from the ER to the cytosol. At the physiological temperature of 37 °C, the free CTA1 subunit is in a partially unfolded conformation that triggers its ERAD-mediated translocation to the cytosol. Thus, the temperature sensitivity of CTA1 structure is an important determinant of its function. Here, we examined the contribution of CTA1 subdomain structure to the thermal unfolding of CTA1. Biophysical measurements demonstrated that the CTA1(1) subdomain is thermally unstable and that the CTA1(2) subdomain provides a degree of conformational stability to CTA1(1). The CTA1(3) subdomain does not affect the overall stability of CTA1, but the thermal unfolding of CTA1 appears to begin with a local loss of structure in the CTA1(3) subdomain: glycerol and acidic pH both inhibited the thermal disordering of full-length CTA1 but not the disordering of a CTA1 construct lacking the A1(3) subdomain. These observations provide mechanistic insight regarding the thermal unfolding of CTA1, an event which facilitates its subsequent translocation to the cytosol.


Subject(s)
Cholera Toxin/chemistry , Hot Temperature , Protein Folding , Cholera Toxin/metabolism , Enzyme Stability , Protein Structure, Tertiary
18.
FEMS Microbiol Lett ; 291(2): 143-50, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19146571

ABSTRACT

This report describes the development and use of TnKnXSp, a selectable broad-host-range reporter transposon with a promoterless aphA gene. Insertion of TnKnXSp into the chromosome of a kanamycin-susceptible bacterium confers resistance to kanamycin only if aphA is transcribed from an active promoter adjacent to the insertion site. We designed TnKnXSp as a tool for identifying environmentally regulated promoters in bacteria and developed general methods for initial characterization of any TnKnXSp integrant. To identify putative iron-regulated promoters in Corynebacterium diphtheriae, we constructed TnKnXSp integrants and identified a subgroup that expressed kanamycin resistance under low-iron, but not high-iron, conditions. We characterized representative integrants with this phenotype, located the TnKnXSp insertion in each, and demonstrated that transcription of aphA was repressed under high-iron vs. low-iron growth conditions. We also demonstrated that TnKnXSp can be used in bacteria other than C. diphtheriae, including Escherichia coli and Bacillus subtilis. Our findings validate TnKnXSp as a useful tool for identifying environmentally regulated promoters in bacteria.


Subject(s)
Bacteria/genetics , DNA Transposable Elements , Genes, Reporter , Mutagenesis, Insertional , Promoter Regions, Genetic , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genetic Vectors/genetics , Iron/metabolism , Protein Binding , Transcription, Genetic
19.
Gene ; 430(1-2): 123-31, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19010402

ABSTRACT

Burkholderia pseudomallei and B. mallei are Gram-negative bacterial pathogens that cause melioidosis in humans and glanders in horses, respectively. Both bacteria are classified as category B select agents in the United States. Due to strict select-agent regulations, the number of antibiotic selection markers approved for use in these bacteria is greatly limited. Approved markers for B. pseudomallei include genes encoding resistance to kanamycin (Km), gentamicin (Gm), and zeocin (Zeo); however, wild type B. pseudomallei is intrinsically resistant to these antibiotics. Selection markers for B. mallei are limited to Km and Zeo resistance genes. Additionally, there are few well developed counter-selection markers for use in Burkholderia. The use of SacB as a counter-selection method has been of limited success due to the presence of endogenous sacBC genes in the genomes of B. pseudomallei and B. mallei. These impediments have greatly hampered the genetic manipulation of B. pseudomallei and B. mallei and currently few reliable tools for the genetic manipulation of Burkholderia exist. To expand the repertoire of genetic tools for use in Burkholderia, we developed the suicide plasmid pMo130, which allows for the compliant genetic manipulation of the select agents B. pseudomallei and B. mallei using allelic exchange. pMo130 harbors an aphA gene which allows for Km selection, the reporter gene xylE, which allows for reliable visual detection of Burkholderia transformants, and carries a modified sacB gene that allows for the resolution of co-integrants. We employed this system to generate multiple unmarked and in-frame mutants in B. pseudomallei, and one mutant in B. mallei. This vector significantly expands the number of available tools that are select-agent compliant for the genetic manipulation of B. pseudomallei and B. mallei.


Subject(s)
Alleles , Burkholderia mallei/genetics , Burkholderia pseudomallei/genetics , Genetic Techniques , Burkholderia mallei/cytology , Burkholderia pseudomallei/cytology , Flagella/genetics , Genetic Complementation Test , Genetic Vectors/genetics , Movement , Plasmids/genetics , Polymerase Chain Reaction , Sequence Deletion
20.
Infect Immun ; 76(4): 1476-84, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18212085

ABSTRACT

Cholera toxin (CT) moves from the plasma membrane (PM) of host cells to the endoplasmic reticulum (ER) by binding to the lipid raft ganglioside GM(1). The homopentomeric B-subunit of the toxin can bind up to five GM(1) molecules at once. Here, we examined the role of polyvalent binding of GM(1) in CT action by producing chimeric CTs that had B-subunits with only one or two normal binding pockets for GM(1). The chimeric toxins had attenuated affinity for binding to host cell PM, as expected. Nevertheless, like wild-type (wt) CT, the CT chimeras induced toxicity, fractionated with detergent-resistant membranes extracted from toxin-treated cells, displayed restricted diffusion in the plane of the PM in intact cells, and remained bound to GM(1) when they were immunoprecipitated. Thus, binding normally to two or perhaps only one GM(1) molecule is sufficient for association with lipid rafts in the PM and toxin action. The chimeric toxins, however, were much less potent than wt toxin, and they entered the cell by endocytosis more slowly, suggesting that clustering of GM(1) molecules by the B-subunit enhances the efficiency of toxin uptake and perhaps also trafficking to the ER.


Subject(s)
Cholera Toxin/genetics , Cholera Toxin/metabolism , Endocytosis/physiology , G(M1) Ganglioside/metabolism , Cell Line , G(M1) Ganglioside/chemistry , Humans , Membrane Microdomains/metabolism , Mutation , Protein Binding , Protein Subunits , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...