Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(10): e76312, 2013.
Article in English | MEDLINE | ID: mdl-24098473

ABSTRACT

In many flowering plants individual fruits contain a mixture of half- and full- siblings, reflecting pollination by several fathers. To better understand the mechanisms generating multiple paternity within fruits we present a theoretical framework linking pollen carryover with patterns of pollinator movement. This 'sire profile' model predicts that species with more extensive pollen carryover will have a greater number of mates. It also predicts that flowers on large displays, which are often probed consecutively during a single pollinator visitation sequence, will have a lower effective number of mates. We compared these predictions with observed values for bumble bee-pollinated Mimulus ringens, which has restricted carryover, and hummingbird-pollinated Ipomopsis aggregata, which has extensive carryover. The model correctly predicted that the effective number of mates is much higher in the species with more extensive carryover. This work extends our knowledge of plant mating systems by highlighting mechanisms influencing the genetic composition of sibships.


Subject(s)
Flowers/physiology , Models, Biological , Plant Physiological Phenomena , Pollination , Algorithms , Animals , Bees , Birds , Fruit , Reproducibility of Results
2.
Mol Ecol ; 18(17): 3745-58, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19674307

ABSTRACT

Although there are many reasons to expect distinct pollinator types to differentially affect a plant's reproductive success, few studies have directly examined this question. Here, we contrast the impact of two kinds of pollinators on reproductive success via male and female functions in the Rocky Mountain columbine, Aquilegia coerulea. We set up pollinator exclusion treatments in each of three patches where Aquilegia plants were visited by either day pollinators (majority bumble bees), by evening pollinators (hawkmoths), or by both (control). Day pollinators collected pollen and groomed, whereas evening pollinators collected nectar but did not groom. Maternal parents, potential fathers and progeny arrays were genotyped at five microsatellite loci. We estimated female outcrossing rate and counted seeds to measure female reproductive success and used paternity analysis to determine male reproductive success. Our results document that bumble bees frequently moved pollen among patches of plants and that, unlike hawkmoths, pollen moved by bumble bees sired more outcrossed seeds when it remained within a patch as opposed to moving between patches. Pollinator type differentially affected the outcrossing rate but not seed set, the number of outcrossed seeds or overall male reproductive success. Multiple visits to a plant and more frequent visits by bumble bees could help to explain the lack of impact of pollinator type on overall reproductive success. The increase in selfing rate with hawkmoths likely resulted from the abundant pollen available in experimental flowers. Our findings highlighted a new type of pollinator interactions that can benefit a plant species.


Subject(s)
Aquilegia/physiology , Pollination/physiology , Animals , Aquilegia/genetics , Bees/physiology , Behavior, Animal , DNA, Plant/genetics , Fertility , Gene Flow , Gene Frequency , Genotype , Microsatellite Repeats , Moths/physiology , Reproduction/physiology , Seeds/genetics
3.
Ann Bot ; 103(9): 1379-83, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19218584

ABSTRACT

BACKGROUND AND AIMS: Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described. METHODS: In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny. KEY RESULTS: The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display. CONCLUSIONS: Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.


Subject(s)
Bees/physiology , Flowers/physiology , Pollination/physiology , Analysis of Variance , Animals , Reproduction
4.
Am J Bot ; 92(5): 885-90, 2005 May.
Article in English | MEDLINE | ID: mdl-21652470

ABSTRACT

Multiply sired fruits provide unambiguous evidence that pollen from two or more donors was deposited on a stigma and successfully fertilized ovules. Such multiple paternity within fruits can have important consequences for both parental and offspring fitness, but little is known about the frequency of multiple paternity or the mechanisms causing it. In this study we quantify the extent of multiple paternity in replicate experimental arrays of Mimulus ringens (square-stem monkeyflower) and use observations of pollinator behavior to infer mechanisms generating multiply sired fruits. In each array, floral displays were trimmed to two, four, eight, or 16 flowers per plant to span the range of display sizes observed in nature. In our sample of 204 fruits, more than 95% had two or more outcross pollen donors. The number of sires per fruit averaged 4.63 ± 0.10 (mean ± 1 SE), including selfs, and did not vary significantly with floral display treatment. Patterns of bumble bee foraging, combined with limited pollen carryover, suggest that observed levels of multiple paternity cannot be fully explained by single probes that deposited mixed pollen loads. Multiple probes to flowers, each delivering pollen from 1-3 different sires, are more likely to have caused the observed patterns. These sequential visits may reduce the potential for pollen competition and female choice based on pollen tube growth rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...