Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 114: 62-70, 2018 May.
Article in English | MEDLINE | ID: mdl-28622848

ABSTRACT

Soft tissue neck injuries, also referred to as whiplash injuries, which can lead to long term suffering accounts for more than 60% of the cost of all injuries leading to permanent medical impairment for the insurance companies, with respect to injuries sustained in vehicle crashes. These injuries are sustained in all impact directions, however they are most common in rear impacts. Injury statistics have since the mid-1960s consistently shown that females are subject to a higher risk of sustaining this type of injury than males, on average twice the risk of injury. Furthermore, some recently developed anti-whiplash systems have revealed they provide less protection for females than males. The protection of both males and females should be addresses equally when designing and evaluating vehicle safety systems to ensure maximum safety for everyone. This is currently not the case. The norm for crash test dummies representing humans in crash test laboratories is an average male. The female part of the population is not represented in tests performed by consumer information organisations such as NCAP or in regulatory tests due to the absence of a physical dummy representing an average female. Recently, the world first virtual model of an average female crash test dummy was developed. In this study, simulations were run with both this model and an average male dummy model, seated in a simplified model of a vehicle seat. The results of the simulations were compared to earlier published results from simulations run in the same test set-up with a vehicle concepts seat. The three crash pulse severities of the Euro NCAP low severity rear impact test were applied. The motion of the neck, head and upper torso were analysed in addition to the accelerations and the Neck Injury Criterion (NIC). Furthermore, the response of the virtual models was compared to the response of volunteers as well as the average male model, to that of the response of a physical dummy model. Simulations with the virtual male and female dummy models revealed differences in dynamic response related to the crash severity, as well as between the two dummies in the two different seat models. For the comparison of the response of the virtual models to the response of the volunteers and the physical dummy model, the peak angular motion of the first thoracic vertebra as found in the volunteer tests and mimicked by the physical dummy were not of the same magnitude in the virtual models. The results of the study highlight the need for an extended test matrix that includes an average female dummy model to evaluate the level of occupant protection different seats provide in vehicle crashes. This would provide developers with an additional tool to ensure that both male and female occupants receive satisfactory protection and promote seat concepts that provide the best possible protection for the whole adult population. This study shows that using the mathematical models available today can provide insights suitable for future testing.


Subject(s)
Accidents, Traffic , Models, Biological , Protective Devices/standards , Safety , Whiplash Injuries/prevention & control , Acceleration , Biomechanical Phenomena , Female , Head/physiology , Healthy Volunteers , Humans , Male , Manikins , Models, Theoretical , Motion , Neck/physiology , Posture , Research Design , Risk , Seat Belts , Sex Factors , Thoracic Vertebrae/physiology , Torso , Whiplash Injuries/etiology
2.
Accid Anal Prev ; 87: 148-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26687541

ABSTRACT

The chest response of the human body has been studied for several load conditions, but is not well known in the case of steering wheel rim-to-chest impact in heavy goods vehicle frontal collisions. The aim of this study was to determine the response of the human chest in a set of simulated steering wheel impacts. PMHS tests were carried out and analysed. The steering wheel load pattern was represented by a rigid pendulum with a straight bar-shaped front. A crash test dummy chest calibration pendulum was utilised for comparison. In this study, a set of rigid bar impacts were directed at various heights of the chest, spanning approximately 120mm around the fourth intercostal space. The impact energy was set below a level estimated to cause rib fracture. The analysed results consist of responses, evaluated with respect to differences in the impacting shape and impact heights on compression and viscous criteria chest injury responses. The results showed that the bar impacts consistently produced lesser scaled chest compressions than the hub; the Middle bar responses were around 90% of the hub responses. A superior bar impact provided lesser chest compression; the average response was 86% of the Middle bar response. For inferior bar impacts, the chest compression response was 116% of the chest compression in the middle. The damping properties of the chest caused the compression to decrease in the high speed bar impacts to 88% of that in low speed impacts. From the analysis it could be concluded that the bar impact shape provides lower chest criteria responses compared to the hub. Further, the bar responses are dependent on the impact location of the chest. Inertial and viscous effects of the upper body affect the responses. The results can be used to assess the responses of human substitutes such as anthropomorphic test devices and finite element human body models, which will benefit the development process of heavy goods vehicle safety systems.


Subject(s)
Accidents, Traffic , Rib Fractures/etiology , Thoracic Injuries/etiology , Weight-Bearing , Wounds, Nonpenetrating/etiology , Biomechanical Phenomena , Compressive Strength , Finite Element Analysis , Humans , Models, Anatomic
3.
Traffic Inj Prev ; 15(2): 196-205, 2014.
Article in English | MEDLINE | ID: mdl-24345023

ABSTRACT

OBJECTIVE: The main aim of this study was to improve the quality of injury risk assessments in steering wheel rim to chest impacts when using the Hybrid III crash test dummy in frontal heavy goods vehicle (HGV) collision tests. Correction factors for chest injury criteria were calculated as the model chest injury parameter ratios between finite element (FE) Hybrid III, evaluated in relevant load cases, and the Total Human Model for Safety (THUMS). This is proposed to be used to compensate Hybrid III measurements in crash tests where steering wheel rim to chest impacts occur. METHODS: The study was conducted in an FE environment using an FE-Hybrid III model and the THUMS. Two impactor shapes were used, a circular hub and a long, thin horizontal bar. Chest impacts at velocities ranging from 3.0 to 6.0 m/s were simulated at 3 impact height levels. A ratio between FE-Hybrid III and THUMS chest injury parameters, maximum chest compression C max, and maximum viscous criterion VC max, were calculated for the different chest impact conditions to form a set of correction factors. The definition of the correction factor is based on the assumption that the response from a circular hub impact to the middle of the chest is well characterized and that injury risk measures are independent of impact height. The current limits for these chest injury criteria were used as a basis to develop correction factors that compensate for the limitations in biofidelity of the Hybrid III in steering wheel rim to chest impacts. RESULTS: The hub and bar impactors produced considerably higher C max and VC max responses in the THUMS compared to the FE-Hybrid III. The correction factor for the responses of the FE-Hybrid III showed that the criteria responses for the bar impactor were consistently overestimated. Ratios based on Hybrid III and THUMS responses provided correction factors for the Hybrid III responses ranging from 0.84 to 0.93. These factors can be used to estimate C max and VC max values when the Hybrid III is used in crash tests for which steering wheel rim to chest interaction occurs. CONCLUSIONS: For the FE-Hybrid III, bar impacts caused higher chest deflection compared to hub impacts, although the contrary results were obtained with the more humanlike THUMS. Correction factors were developed that can be used to correct the Hybrid III chest responses. Higher injury criteria capping limits for steering wheel impacts are acceptable. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.


Subject(s)
Accidents, Traffic/statistics & numerical data , Finite Element Analysis , Manikins , Models, Biological , Thoracic Injuries/etiology , Biomechanical Phenomena , Humans , Male , Reproducibility of Results , Risk Assessment , Thorax/physiology
4.
Traffic Inj Prev ; 8(2): 205-15, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17497525

ABSTRACT

OBJECTIVE: Since the shoulders are rarely seriously injured in frontal or oblique collisions, they have been given low priority in the development of frontal impact crash test dummies. The shoulder complex geometry and its kinematics are of vital importance for the overall dummy kinematics. The shoulder complex also influences the risk of the safety belt slipping off the shoulder in oblique forward collisions. The first aim of this study was to develop a new 50th percentile male THOR shoulder design, while the second was to compare the new shoulder, mounted on a THOR NT dummy, with volunteer, THOR NT, and Hybrid III range of motion and stiffness data. The third aim was to test the repeatability of the new shoulder during dynamic testing and to see how the design behaves with respect to belt slippage in a 45 degrees far-side collision. METHODS: The new 50th percentile THOR shoulder design was developed with the aid of a shell model of the seated University of Michigan Transportation Research Institute (UMTRI) 50th percentile male with coordinates for joints and bony landmarks (Schneider et al., 1983). The new shoulder design has human-like bony landmarks for the acromion and coracoid processes. The clavicle curvature and length are also made similar to that of a male human, as is the range of motion in the anterior-posterior, superior-inferior, and medial-lateral directions. The new shoulder design was manufactured and tested under the same conditions that Törnvall et al. (2005b) used to compare the shoulder range of motion for the volunteers, Hybrid III, and THOR Alpha. The new design was also tested in two dynamic test configurations: the first was a 0 degrees full-frontal test and the second was a 45 degrees far-side test. The dummy tests were conducted with an R-16 seat with a three-point belt, the Delta V was 27.0+/-0.5 km/h and the maximum peak acceleration was approximately 14.6+/-0.5 g for each test. RESULTS: A new shoulder design with geometry close to that of humans was developed to be retrofitted to the THOR NT dummy. The results showed that the range of motion for the new shoulder complex during static loading was larger by at least a factor of three, for the maximum load (200 N/arm), than that of either the Hybrid III or the THOR NT; this means it was more similar to the volunteers' range of motion. It was observed that the THOR NT with the new shoulder did not slide out of the shoulder belt during a far-side collision. The performance of the new shoulder was reasonably repeatable and stable during both the static tests and the sled tests. CONCLUSION: A new shoulder for the THOR NT has been designed and developed, and data from static range of motion tests and sled tests indicate that the new shoulder complex has the potential to function in a more human-like manner on the THOR dummy.


Subject(s)
Accidents, Traffic , Equipment Design , Human Experimentation , Manikins , Shoulder/physiology , Biomechanical Phenomena , Humans , Range of Motion, Articular , Shoulder Injuries , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...