Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Earth Sci Inform ; 16(2): 1929-1945, 2023.
Article in English | MEDLINE | ID: mdl-37213218

ABSTRACT

Satellite Interferometric Synthetic Aperture Radar (InSAR) is a space-borne geodetic technique that can map ground displacement at millimetre accuracy. Via the new era for InSAR applications provided by the Copernicus Sentinel-1 SAR satellites, several open-source software packages exist for processing SAR data. These packages enable one to obtain high-quality ground deformation maps, but still require a deep understanding of InSAR theory and the related computational tools, especially when dealing with a large stack of images. Here we present an open-source toolbox, EZ-InSAR (easy-to-use InSAR), for a user-friendly implementation of InSAR displacement time series analysis with multi-temporal SAR images. EZ-InSAR integrates the three most popular and renowned open-source tools (i.e., ISCE, StaMPS, and MintPy), to generate interferograms and displacement time series by using these state-of-art algorithms within a seamless Graphical User Interface. EZ-InSAR reduces the user's workload by automatically downloading the Sentinel-1 SAR imagery and the digital elevation model data for the user's area of interest, and by streamlining preparation of input data stacks for the time series InSAR analysis. We illustrate the EZ-InSAR processing capabilities by mapping recent ground deformation at Campi Flegrei (> 100 mm·yr-1) and Long Valley (~ 10 mm·yr-1) calderas with both Persistent Scatterer InSAR and Small-Baseline Subset approaches. We also validate the test results by comparing the InSAR displacements with Global Navigation Satellite System measurements at those volcanoes. Our tests indicate that the EZ-InSAR toolbox provided here can serve as a valuable contribution to the community for ground deformation monitoring and geohazard evaluation, as well as for disseminating bespoke InSAR observations for all.

2.
Sci Rep ; 7(1): 10970, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887446

ABSTRACT

Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

3.
Science ; 353(6296): aaf8988, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27418515

ABSTRACT

Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption.

SELECTION OF CITATIONS
SEARCH DETAIL
...