Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(13): eadj8898, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536930

ABSTRACT

Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.

2.
Science ; 368(6491)2020 05 08.
Article in English | MEDLINE | ID: mdl-32381689

ABSTRACT

Van den Heuvel and Tauris argue that if the red giant star in the system 2MASS J05215658+4359220 has a mass of 1 solar mass (M ☉), then its unseen companion could be a binary composed of two 0.9 M ☉ stars, making a triple system. We contend that the existing data are most consistent with a giant of mass [Formula: see text] M ☉, implying a black hole companion of [Formula: see text] M ☉.

3.
Science ; 366(6465): 637-640, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31672898

ABSTRACT

Black hole binary systems with companion stars are typically found via their x-ray emission, generated by interaction and accretion. Noninteracting binaries are expected to be plentiful in the Galaxy but must be observed using other methods. We combine radial velocity and photometric variability data to show that the bright, rapidly rotating giant star 2MASS J05215658+4359220 is in a binary system with a massive unseen companion. The system has an orbital period of ~83 days and near-zero eccentricity. The photometric variability period of the giant is consistent with the orbital period, indicating star spots and tidal synchronization. Constraints on the giant's mass and radius imply that the unseen companion is [Formula: see text] solar masses, indicating that it is a noninteracting low-mass black hole or an unexpectedly massive neutron star.

4.
Nature ; 551(7679): 210-213, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29120417

ABSTRACT

Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

SELECTION OF CITATIONS
SEARCH DETAIL
...