Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Chem Ecol ; 35(6): 664-78, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19462207

ABSTRACT

The effects of moderately elevated ozone (ca. 35 ppb) on the growth and secondary chemistry of the leaves of two soil-grown Finnish hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones with different ozone sensitivities were studied at an open-air exposure field in Kuopio, Finland. Stomatal conductance, photosynthetic rate, and chlorophyll fluorescence were measured during the third growing season. Foliar phenolic concentrations, ergosterol concentration of fine roots, and final dry mass of the trees were determined at the end of the third growing season. Elevated ozone increased the ectomycorrhizal status of the fine roots but had no effect on gas exchange or on the final biomass of either of the clones, indicating equal sensitivity to ozone and no effect of elevated ozone on the intraspecific competitive ability of the clones after three growing seasons. However, in agreement with the data from potted plants of the same clones after two growing seasons, significant differences between the clones were found in all parameters measured. A negative correlation between growth and high concentrations of foliar phenolics indicated that allocation to secondary chemistry also was costly in terms of growth under high resource availability.


Subject(s)
Ozone/pharmacology , Populus/drug effects , Biomass , Chimera , Chlorophyll/metabolism , Environmental Exposure , Nitrogen/metabolism , Phenols/analysis , Phenols/chemistry , Photosynthesis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Stomata/physiology , Populus/chemistry , Populus/growth & development
2.
Plant Biol (Stuttg) ; 9(2): 181-90, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17357013

ABSTRACT

Because seedlings and mature trees do not necessarily respond similarly to O(3) stress, it is critically important that exposure systems be developed that allow exposure of seedlings through to mature trees. Here we describe three different O(3) Free-Air Exposure Systems that have been used successfully for exposure at all growth stages. These systems of spatially uniform O(3) release have been shown to provide reliable O(3) exposure with minimal, if any, impact on the microclimate. This methodology offers a welcome alternative to chamber studies which had severe space constraints precluding stand or community-level studies and substantial chamber effects on the microclimate and, hence physiological tree performance.


Subject(s)
Air , Ozone/pharmacology , Research Design , Trees/drug effects , Finland , Fumigation
3.
Tree Physiol ; 21(16): 1205-13, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11600342

ABSTRACT

Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.


Subject(s)
Nitrogen/physiology , Ozone , Pinus/growth & development , Trees/growth & development , Chloroplasts/ultrastructure , Pinus/physiology , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Plant Roots/growth & development , Plant Shoots/growth & development , Trees/physiology
4.
Tree Physiol ; 21(7): 447-56, 2001 May.
Article in English | MEDLINE | ID: mdl-11340045

ABSTRACT

Four-year-old Norway spruce (Picea abies L. (Karst.)) seedlings were exposed to ambient and elevated (1.5 x ambient in 1997 and 1.6 x ambient in 1998) ozone concentrations [O3] and three nitrogen (N) and two phosphorus (P) availabilities: "optimal" values (control); 70% of the control N and P values (LN and LP); and 150% of the control N value (HN). Treatments were applied in an open-field ozone fumigation facility during the 1997 and 1998 growing seasons. Effects on growth, mineral and pigment concentrations, stomatal conductance and ultrastructure of needles were studied. The HN treatment increased growth significantly, whereas elevated [O3] had a slight or variable impact on growth and biomass allocation in all N treatments. Although there were no significant effects of the LP treatment on plant growth during the second year, there was a reduction in 1-year-old shoot dry mass in the elevated O3 + LP treatment at the end of the experiment. There were no significant treatment effects on mineral concentrations of current-year and 1-year-old needles at the final harvest. In response to the HN treatment, chlorophyll a and b and carotenoid concentrations increased significantly in current-year needles. Chlorophyll a/b ratio decreased in response to elevated [O3] alone, but increased in seedlings in the O(3) + LP treatment. Stomatal conductance of current-year needles decreased with increasing N availability, but increased in response to elevated [O3]. However, the O3-induced increase in stomatal conductance was less in the LN and LP treatments than in the control treatment. In chloroplasts of current-year needles, increased N availability decreased mean starch grain area, but increased the number of plastoglobuli. We conclude that Norway spruce seedlings are relatively tolerant to slightly elevated [O3], and that nitrogen and phosphorus imbalances do not greatly affect the influence of O3 on this species when the exposure lasts for two growing seasons or less.


Subject(s)
Ozone , Picea/physiology , Trees/physiology , Minerals/analysis , Nitrogen/physiology , Phosphorus/physiology , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/physiology
5.
Environ Pollut ; 109(3): 479-87, 2000 Sep.
Article in English | MEDLINE | ID: mdl-15092881

ABSTRACT

Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to ambient or elevated ozone (O(3)) concentrations in open-air exposure fields in central Finland in 1995-97. Three different treatments were applied in 1996 and 1997: ambient air, elevated O(3) (1.3-1.5xambient) during the growing season (June-September) and elevated O(3) in March-September, i.e. the growing season including the springtime O(3) exposure. The ambient mean O(3) concentrations were 40% higher in springtime (March-May) compared to the concentrations during the growing seasons. Maximum O(3) concentrations were measured in April or early May, whereas a clear increase in the stomatal activity of the seedlings was observed by the middle of May. This suggests a low intake of O(3) by conifers despite the higher O(3) concentrations in spring. Stomatal conductance, and contents of chlorophyll and ribulosebisphosphate carboxylase/oxygenase (Rubisco) in current-year needles were not significantly affected by any O(3) treatment. Only a slight decrease in current-year shoot growth, slight increase in the abscission of 2-year-old needles and increased electron density of chloroplast stroma by springtime O(3) exposure suggest a rather small contribution of elevated springtime O(3) concentrations to total O(3) damage under current climatic conditions in Finland. However, the increases in springtime O(3) concentrations may enhance the cumulative effects of O(3) during long-term O(3) exposures.

6.
Environ Pollut ; 107(1): 99-107, 2000 Jan.
Article in English | MEDLINE | ID: mdl-15093013

ABSTRACT

This study examines the effects of exhaust gas exposure on the epistomatal wax structure and mesophyll ultrastructure in needles of Norway spruce (Picea abies (L.) Karst.) seedlings. Stomatal diffusive resistance was also measured. Two independent exhaust gas fumigations were performed: 100 and 200 ppb measured as NO(x), for 10 days and 50, 100 and 200 ppb NO(x) for 19 days. The obstructive effect of exhaust gas exposure on epistomatal wax tubules was apparent. The stomata became covered by flat and solid wax resulting from the structural degradation of the wax crystalloids. Increasing the exhaust gas concentration in the chamber atmosphere exacerbated the degradation of the wax structure. Exhaust gas exposure induced aggregation and electron translucence of plastoglobuli, swelling of thylakoids, increase of cytoplasmic lipids and slight increase of vesiculation of cytoplasm in mesophyll cells of current and previous year needles. These changes were exemplified in current year needles. Damage to the epicuticular waxes and mesophyll ultrastructure of spruce needles most likely reflects the NO(x) and volatile hydrocarbon fraction. The alterations in epicuticular waxes and mesophyll ultrastructure can be related to accelerated senescence of the youngest, photosynthetically active, needle generation. The exhaust gas also resulted in decreased diffusive stomatal resistance at night which indicates that the exhaust gas exposure disturbed the gas exchange of spruce seedlings. The results show that even relatively short-term exposure to realistic concentrations of exhaust gas in the atmosphere can induce rather severe injuries to the needle surface structure as well as ultrastructure at the cellular level.

7.
New Phytol ; 138(2): 295-305, 1998 Feb.
Article in English | MEDLINE | ID: mdl-33863082

ABSTRACT

Well watered (WW) or drought-stressed (DS) saplings of ozone-sensitive and ozone-tolerant (less sensitive) birch (Betula pendula Roth) clones were exposed for 43 d to 0 nl l-1 or 100 nl l-1 ozone. Relative growth rates of leaves, stem, and roots, leaf discolouration, stomatal conductance and induction of genes encoding stress-related proteins PR-10, PAL and a LEA-group protein BP8 were determined. In general, both ozone and drought stress, singly and in combination, increased transcript levels of PR-10 in both clones. This was related to lower induction of PAL (except in older leaves of the tolerant clone), and increased proportions of visibly injured and yellowed leaves in ozone-exposed plants. The clones differed in their stomatal conductance and growth responses. In the less sensitive clone 2, ozone did not affect growth rates, but high stomatal conductance was observed in WW ozone-exposed plants. The more sensitive clone 5 showed, on the contrary, reduced growth rates and low stomatal conductance in WW ozone plants. Interestingly, clone 2 was sensitive to drought stress alone, whereas clone 5 was highly sensitive to ozone and drought stress experienced together. The results show that appearance of visible injuries (necrotic flecks) and enhanced yellowing of leaves coincided with the induction of genes for stress proteins PR-10 and PAL. The short-term growth responses, however, seemed to be separate processes. Additionally, stomatal conductance was related to leaf injuries and growth rates in a complicated manner, emphasizing the complex nature of ozone sensitivity/tolerance mechanisms in birch.

8.
Oecologia ; 114(4): 455-460, 1998 May.
Article in English | MEDLINE | ID: mdl-28307894

ABSTRACT

Scots pine (Pinus sylvestris L.) trees, aged about 20 years old, growing on a natural pine heath were exposed to two concentrations of CO2 (ambient CO2 and double-ambient CO2) and two O3 regimes (ambient O3 and double-ambient O3) and their combination in open-top chambers during growing seasons 1994, 1995 and 1996. Concentrations of foliar starch and secondary compounds are reported in this paper. Starch concentrations remained unaffected by elevated CO2 and/or O3 concentrations during the first 2 study years. But in the autumn of the last study year, a significantly higher concentration of starch was found in current-year needles of trees exposed to elevated CO2 compared with ambient air. There were large differences in concentrations of starch and secondary compounds between individual trees. Elevated concentrations of CO2 and/or O3 did not have any significant effects on the concentrations of foliar total monoterpenes, total resin acids or total phenolics. Significantly higher concentrations of monoterpenes and resin acids and mostly lower concentrations of starch were found in trees growing without chambers than in those growing in open-top chambers, while there were no differences in concentrations of total phenolics between trees growing without or in chambers. The results suggest that elevated concentrations of CO2 might increase foliar starch concentrations in Scots pine, while secondary metabolites remain unaffected. Realistically elevated O3 concentrations do not have clear effects on carbon allocation to starch and secondary compounds even after 3 exposure years.

9.
Environ Pollut ; 96(2): 117-27, 1997.
Article in English | MEDLINE | ID: mdl-15093411

ABSTRACT

The differences in growth, leaf senescence, visible ozone injuries and stomatal density between one coastal site (natural ozone) and two inland sites (natural and elevated ozone) in Finland were determined for saplings of Betula pendula clones grown under open-field conditions during two growing seasons. Responses in growth, leaf senescence, visible injuries, and stomatal density were determined in relation to cumulative ozone exposure accumulated over the thresholds of 30, 40 and 50 ppb (10(9)) during the exposure period. In addition, the effects of the different ozone exposures on ultrastructure of chloroplasts were studied. Increasing ozone exposure resulted in reduced shoot dry weight, stimulated (first year) or reduced (second year) height growth, accelerated autumn yellowing of leaves, increased stomatal density, visible symptoms and chloroplast injuries, and increased number and size of plastoglobuli. Newly expanded mature leaves in midsummer were more sensitive to ozone episodes than younger developing leaves in the early growing season. In most parameters, the best correlation was achieved with the exposure index AOT30. Ozone risk for birch is highest in the southern coastal area of Finland, where background ozone concentrations are higher than in inland sites.

10.
Environ Pollut ; 95(1): 37-44, 1997.
Article in English | MEDLINE | ID: mdl-15093472

ABSTRACT

Forty clones of Betula pendula and 6 clones of Betula pubescens, originating from southern and central Finland, were ranked in order of ozone sensitivity according to visible injuries, growth and leaf senescense under low ozone exposure. The plants were fumigated in natural climatic conditions using an open-air exposure system during two growing seasons. Control plants were grown under ambient air, and the elevated-ozone exposures were 1.6x the ambient in 1994 and 1.7x the ambient in 1995. The differences in ozone sensitivity among clones were large. Ozone tolerance was related to thicker leaves and higher stomatal density as compared to sensitive clones. Ultrastructural ozone-induced symptoms were found in chloroplasts of sensitive clones. Increased number of visibly injured leaves on fumigated plants was correlated with reduced leaf formation, foliage area, shoot dry wt and number of stomata, and increased yellowing of leaves. The results suggest that a considerable proportion of birch trees, showing high sensitivity to ozone, are at risk if ambient ozone exposures increase.

11.
Tree Physiol ; 16(7): 597-605, 1996 Jul.
Article in English | MEDLINE | ID: mdl-14871697

ABSTRACT

Saplings of ozone-sensitive and ozone-tolerant birch (Betula pendula Roth.), clones B and C, respectively, were exposed to ozone concentrations that were 1.7-fold higher than ambient for one growing season under open-field conditions. Ambient air was used as the control treatment. In the ozone-sensitive clone B, there was an initial stimulation of leaf area growth in response to the ozone treatment, but further ozone exposure caused reductions in leaf and stem biomass growth, Rubisco and chlorophyll a contents, net photosynthesis, water use efficiency and chloroplast size. It also caused an alteration in chloroplast shape and injury to thylakoid membranes. In the ozone-tolerant clone C, ozone fumigation did not affect growth rate, and there were no consistent changes in chlorophyll content, photosynthesis or water use efficiency. There were also fewer ultrastructural abnormalities in the chloroplasts of clone C than of clone B. Based on the observed biochemical, physiological and structural changes in chloroplasts of clone B in response to low concentrations of ozone, we conclude that the increasing concentration of tropospheric ozone represents a risk to natural birch populations.

12.
J Chem Ecol ; 22(4): 617-36, 1996 Apr.
Article in English | MEDLINE | ID: mdl-24227573

ABSTRACT

Effects of nitrogen availability on secondary compounds, mycorrhizal infection, and aphid growth of 1-year-old Scots pine (Pinus sylvestris L.) seedlings were studied during one growing season. Seedlings were fertilized with nutrient solutions containing low, optimum, and two elevated (2 × and 4 × optimum) levels of NH4NO3. At the end of growing season foliar nitrogen concentration, needle biomass, needle length, water contents of needles, root collar diameter, and number of buds increased with enhanced nitrogen availability. Addition of nitrogen did not have effect on concentrations of monoterpenes in growing needles, but in mature needles significantly decreased concentrations of some individual and total monoterpenes were detected. In growing needles the concentrations of some individual resin acids decreased, and in mature needles concentrations of some individual and total resin acids increased with increased nitrogen fertilization. Higher numbers of resin ducts were found in mature needles with nitrogen fertilization. Nitrogen fertilization decreased total phenolic concentrations in growing and mature needles of the current year, but in needles of the previous year no significant differences occurred. Mycorrhizal infection was highest at medium (optimum and 2 × optimum) nitrogen fertilization levels. The relative growth rate (RGR) of grey pine aphid [Schizolachnus pineti (F.)] responded positively to the increase in foliar nitrogen content. However, the increase in aphid performance between optimum and the highest fertilization level was slight. This may indicate a deterring effect of resin acids on aphids. The results indicate that carbon/nutrient balance hypothesis fails to predict directly the effects of nitrogen availability on concentrations of carbon-based defensive compounds in mature foliage. Altered nitrogen supply affects allocation to secondary metabolites differently, depending on the developmental state of the plant and the biosynthesis pathway, cost of synthesis, and storage of compounds.

13.
New Phytol ; 132(1): 145-154, 1996 Jan.
Article in English | MEDLINE | ID: mdl-33863056

ABSTRACT

Clonal birch (Betula pendula Roth.) seedlings at three different developmental stages were fumigated for 12h daily with 50, W and 130 ppb ozone for 25 d. When transferred to fumigation chambers, the leaves of plant group 1 were almost expanded, in group 2 they were fast enlarging, and in group 3 all the leaves emerged under the exposure. The plants in which the leaves emerged under the ozone stress were the most resistant to ozone. In groups 1 and 2 ozone treatments reduced the growth of leaf biomass, and induced more visible injuries on leaves and ultrastructural symptoms in chloroplasts than they did in group 3. The stomatal density of leaves increased in response to ozone in all the groups. The effects of ozone on stomatal conductance were complex. In groups 1 and 2 the 50ppb ozone exposure increased stomatal conductance whereas lowered conductances were observed in group 3 after fumigation with 90 and 130 ppb ozone. The results suggest that the leaves developing under ozone fumigation were better able of tolerate the ozone stress, as indicated by unaffected or stimulated growth and small amounts of visible and ultrastructural injuries and stomatal changes. It is possible to regard the changes as acclimation reactions.

14.
New Phytol ; 125(3): 615-623, 1993 Nov.
Article in English | MEDLINE | ID: mdl-33874596

ABSTRACT

It is evident that even outside the classical high ozone areas some plant species are at risk. In this study seedlings of five birch clones (Betula pendula Roth.) were exposed to a slightly elevated ozone level in an open-field experiment over two growing seasons. The ozone doses were 1.2 × (1991) and 15 × (1992) higher than the ambient. The clones were also fumigated with 150 nl I1 ozone for 24 d (12 h d-1 ) in a chamber experiment. They were found to differ in their susceptibility to ozone: ozone fumigation decreased the height growth and leaf biomass, and increased the amount of advanced visible injury in leaves of the most sensitive clone, but did not affect the height growth or amount of visible injury of the most tolerant clone. The other three clones were intermediate with respect to their sensitivity to ozone. In all clones, elevated O3 concentrations increased diffusive resistance to water vapour but increased the stomatal density in the emerging leaves. The appearance of autumn colouring was accelerated in the field experiments. The results support the conclusion that birch populations in Finland can be negatively affected by ozone. The effect is most likely in sensitive birch individuals during ozone episodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...