Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(1): 102922, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38427570

ABSTRACT

As the number and complexity of transcriptomic datasets increase, there is a rising demand for accessible and user-friendly analysis tools. Here, we present hCoCena (horizontal construction of co-expression networks and analysis), a toolbox facilitating the analysis of a single dataset, as well as the joint analysis of multiple datasets. We describe steps for workspace setup, formatting tables, data processing, and network integration. We then detail procedures for gene clustering, gene set enrichment analysis, and transcription factor enrichment analysis. For complete details on the use and execution of this protocol, please refer to Oestreich et al.1.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Cluster Analysis , Transcription Factors
2.
Bioinformatics ; 38(20): 4727-4734, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36018233

ABSTRACT

MOTIVATION: Transcriptome-based gene co-expression analysis has become a standard procedure for structured and contextualized understanding and comparison of different conditions and phenotypes. Since large study designs with a broad variety of conditions are costly and laborious, extensive comparisons are hindered when utilizing only a single dataset. Thus, there is an increased need for tools that allow the integration of multiple transcriptomic datasets with subsequent joint analysis, which can provide a more systematic understanding of gene co-expression and co-functionality within and across conditions. To make such an integrative analysis accessible to a wide spectrum of users with differing levels of programming expertise it is essential to provide user-friendliness and customizability as well as thorough documentation. RESULTS: This article introduces horizontal CoCena (hCoCena: horizontal construction of co-expression networks and analysis), an R-package for network-based co-expression analysis that allows the analysis of a single transcriptomic dataset as well as the joint analysis of multiple datasets. With hCoCena, we provide a freely available, user-friendly and adaptable tool for integrative multi-study or single-study transcriptomics analyses alongside extensive comparisons to other existing tools. AVAILABILITY AND IMPLEMENTATION: The hCoCena R-package is provided together with R Markdowns that implement an exemplary analysis workflow including extensive documentation and detailed descriptions of data structures and objects. Such efforts not only make the tool easy to use but also enable the seamless integration of user-written scripts and functions into the workflow, creating a tool that provides a clear design while remaining flexible and highly customizable. The package and additional information including an extensive Wiki are freely available on GitHub: https://github.com/MarieOestreich/hCoCena. The version at the time of writing has been added to Zenodo under the following link: https://doi.org/10.5281/zenodo.6911782. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Transcriptome , Gene Expression Profiling , Phenotype , Workflow
3.
Front Immunol ; 13: 917232, 2022.
Article in English | MEDLINE | ID: mdl-35979364

ABSTRACT

Despite its high prevalence, the cellular and molecular mechanisms of chronic obstructive pulmonary disease (COPD) are far from being understood. Here, we determine disease-related changes in cellular and molecular compositions within the alveolar space and peripheral blood of a cohort of COPD patients and controls. Myeloid cells were the largest cellular compartment in the alveolar space with invading monocytes and proliferating macrophages elevated in COPD. Modeling cell-to-cell communication, signaling pathway usage, and transcription factor binding predicts TGF-ß1 to be a major upstream regulator of transcriptional changes in alveolar macrophages of COPD patients. Functionally, macrophages in COPD showed reduced antigen presentation capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and mitochondrial dysfunction, reminiscent of impaired immune activation.


Subject(s)
Macrophages, Alveolar , Pulmonary Disease, Chronic Obstructive , Chemotaxis/physiology , Humans , Macrophages/metabolism , Monocytes/metabolism
4.
Nat Commun ; 12(1): 7322, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916498

ABSTRACT

Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.


Subject(s)
Embryoid Bodies/cytology , Embryonic Development , Embryonic Stem Cells/cytology , Animals , Blastocyst/cytology , Blastocyst/metabolism , Cell Culture Techniques, Three Dimensional , Cellular Reprogramming , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryoid Bodies/metabolism , Embryonic Stem Cells/metabolism , Endoderm/embryology , Endoderm/metabolism , Gene Expression Regulation, Developmental , Mice , RNA-Seq
5.
ERJ Open Res ; 7(3)2021 Jul.
Article in English | MEDLINE | ID: mdl-34527724

ABSTRACT

BACKGROUND: Immune cells play a major role in the pathogenesis of COPD. Changes in the distribution and cellular functions of major immune cells, such as alveolar macrophages (AMs) and neutrophils are well known; however, their transcriptional reprogramming and contribution to the pathophysiology of COPD are still not fully understood. METHOD: To determine changes in transcriptional reprogramming and lipid metabolism in the major immune cell type within bronchoalveolar lavage fluid, we analysed whole transcriptomes and lipidomes of sorted CD45+Lin-HLA-DR+CD66b-Autofluorescencehi AMs from controls and COPD patients. RESULTS: We observed global transcriptional reprogramming featuring a spectrum of activation states, including pro- and anti-inflammatory signatures. We further detected significant changes between COPD patients and controls in genes involved in lipid metabolism, such as fatty acid biosynthesis in GOLD2 patients. Based on these findings, assessment of a total of 202 lipid species in sorted AMs revealed changes of cholesteryl esters, monoacylglycerols and phospholipids in a disease grade-dependent manner. CONCLUSIONS: Transcriptome and lipidome profiling of COPD AMs revealed GOLD grade-dependent changes, such as in cholesterol metabolism and interferon-α and γ responses.

6.
Genome Med ; 13(1): 7, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441124

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Subject(s)
COVID-19/pathology , Neutrophils/metabolism , Transcriptome , Antiviral Agents/therapeutic use , COVID-19/virology , Case-Control Studies , Down-Regulation , Drug Repositioning , Humans , Neutrophils/cytology , Neutrophils/immunology , Phenotype , Principal Component Analysis , RNA/blood , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Severity of Illness Index , Up-Regulation , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...