Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374873

ABSTRACT

Ophidian serpentoviruses, positive-sense RNA viruses in the order Nidovirales, are important infectious agents of both captive and free-ranging reptiles. Although the clinical significance of these viruses can be variable, some serpentoviruses are pathogenic and potentially fatal in captive snakes. While serpentoviral diversity and disease potential are well documented, little is known about the fundamental properties of these viruses, including their potential host ranges, kinetics of growth, environmental stability, and susceptibility to common disinfectants and viricides. To address this, three serpentoviruses were isolated in culture from three unique PCR-positive python species: Ball python (Python regius), green tree python (Morelia viridis), and Stimson's python (Antaresia stimsoni). A median tissue culture infectious dose (TCID50) was established to characterize viral stability, growth, and susceptibility. All isolates showed an environmental stability of 10-12 days at room temperature (20 °C). While all three viruses produced variable peak titers on three different cell lines when incubated at 32 °C, none of the viruses detectably replicated at 35 °C. All viruses demonstrated a wide susceptibility to sanitizers, with 10% bleach, 2% chlorhexidine, and 70% ethanol inactivating the virus in one minute and 7% peroxide and a quaternary ammonium solution within three minutes. Of seven tested antiviral agents, remdesivir, ribavirin, and NITD-008, showed potent antiviral activity against the three viruses. Finally, the three isolates successfully infected 32 unique tissue culture cell lines representing different diverse reptile taxa and select mammals and birds as detected by epifluorescent immunostaining. This study represents the first characterization of in vitro properties of growth, stability, host range, and inactivation for a serpentovirus. The reported results provide the basis for procedures to mitigate the spread of serpentoviruses in captive snake colonies as well as identify potential non-pharmacologic and pharmacologic treatment options for ophidian serpentoviral infections.

2.
J Am Chem Soc ; 138(1): 281-8, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26645558

ABSTRACT

In seeking to create more-stable transition metal-alkane complexes, we generated cationic alkane complexes of the type [(HEB)Re(CO)2(alkane)][Al(OR(f))4] (HEB = η(6)-hexaethylbenzene; alkane = cyclopentane (16) or pentane (17-19); OR(f) = perfluoro-tert-butoxy) via photolysis of the precursor complex [(HEB)Re(CO)3][Al(OR(f))4] (15) in the presence of the added alkane. The alkane complexes were generated in a hydrofluorocarbon (HFC) solvent, most often CF3CH2CF3, which is capable of simultaneously dissolving the ionic complex 15 and a small amount of alkane at low temperature (183 K). Use of the HFC solvent in tandem with the highly fluorinated, solubilizing, weakly coordinating [Al(OR(f))4](-) anion overcomes the technical difficulty of combining ionic species with alkanes in solution without the solvent molecules rapidly displacing the bound alkane ligand, as the alkanes bind in preference to the HFCs to the organometallic fragments employed in this study. The [(HEB)Re(CO)2(alkane)](+) complexes are more long-lived than the corresponding neutral alkane complexes [(HEB)W(CO)2(alkane)] and [CpRe(CO)2(alkane)] (Cp = η(5)-cyclopentadienyl), with samples of [CpRe(CO)2(cyclopentane)] decaying significantly more rapidly than [(HEB)Re(CO)2(alkane)](+) when present in the same solution. Intramolecular exchange of the methylene group bound to the metal within the cyclopentane ligand in 16 was observed at 212 K, with the 1,2 shifts appearing to be faster than 1,3 shifts.

SELECTION OF CITATIONS
SEARCH DETAIL
...