Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 118(6): 2991-3006, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28855291

ABSTRACT

The precise role and mechanisms underlying efferent modulation of peripheral vestibular afferent function are not well understood in mammals. Clarifying the details of efferent action may lead to new strategies for clinical management of debilitating disturbances in vestibular and balance function. Recent evidence in turtle indicates that efferent modulation of M-currents is likely one mechanism for modifying afferent discharge. M-currents depend in part on KCNQ potassium conductances (Kv7), which can be adjusted through efferent activation of M1, M3, and/or M5 muscarinic acetylcholine receptors (mAChRs). How KCNQ channels and altered M-currents affect vestibular afferent function in vivo is unclear, and whether such a mechanism operates in mammals is unknown. In this study we used the KCNQ antagonist XE991 and the KCNQ activator retigabine in anesthetized mice to evaluate the effects of M-current modulation on peripheral vestibular responses to transient head motion. At low doses of XE991, responses were modestly enhanced, becoming larger in amplitude and shorter in latency. Higher doses of XE991 produced transient response enhancement, followed by steady-state suppression where latencies and thresholds increased and amplitudes decreased. Retigabine produced opposite effects. Auditory function was also impacted, based on results of companion auditory brain stem response testing. We propose that closure of KCNQ channels transforms vestibular afferent behavior by suppressing responses to transient high-frequency stimuli while simultaneously enhancing responses to sustained low-frequency stimulation. Our results clearly demonstrate that KCNQ channels are critical for normal mammalian vestibular function and suggest that efferent action may utilize these mechanisms to modulate the dynamic characteristics and gain of vestibular afferent responses.NEW & NOTEWORTHY The role of calyceal KCNQ channels and associated M-current in normal mammalian vestibular function is unknown. Our results show that calyceal KCNQ channels are critical for normal vestibular function in the intact mammal. The findings provide evidence that efferent modulation of M-currents may act normally to differentially adjust the sensitivity of vestibular neurons to transient and tonic stimulation and that such mechanisms may be targeted to achieve effective clinical management of vestibular disorders.


Subject(s)
Head Movements , Motor Neurons/physiology , Vestibule, Labyrinth/physiology , Animals , Anthracenes/pharmacology , Carbamates/pharmacology , Evoked Potentials , Female , KCNQ Potassium Channels/agonists , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/metabolism , Membrane Transport Modulators/pharmacology , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Phenylenediamines/pharmacology
2.
J Neurosci ; 37(7): 1873-1887, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28093476

ABSTRACT

Stimulation of vestibular efferent neurons excites calyx and dimorphic (CD) afferents. This excitation consists of fast and slow components that differ >100-fold in activation kinetics and response duration. In the turtle, efferent-mediated fast excitation arises in CD afferents when the predominant efferent neurotransmitter acetylcholine (ACh) activates calyceal nicotinic ACh receptors (nAChRs); however, it is unclear whether the accompanying efferent-mediated slow excitation is also attributed to cholinergic mechanisms. To identify synaptic processes underlying efferent-mediated slow excitation, we recorded from CD afferents innervating the turtle posterior crista during electrical stimulation of efferent neurons, in combination with pharmacological probes and mechanical stimulation. Efferent-mediated slow excitation was unaffected by nAChR compounds that block efferent-mediated fast excitation, but were mimicked by muscarine and antagonized by atropine, indicating that it requires ACh and muscarinic ACh receptor (mAChR) activation. Efferent-mediated slow excitation or muscarine application enhanced the sensitivity of CD afferents to mechanical stimulation, suggesting that mAChR activation increases afferent input impedance by closing calyceal potassium channels. These observations were consistent with suppression of a muscarinic-sensitive K+-current, or M-current. Immunohistochemistry for putative M-current candidates suggested that turtle CD afferents express KCNQ3, KCNQ4, and ERG1-3 potassium channel subunits. KCNQ channels were favored as application of the selective antagonist XE991 mimicked and occluded efferent-mediated slow excitation in CD afferents. These data highlight an efferent-mediated mechanism for enhancing afferent sensitivity. They further suggest that the clinical effectiveness of mAChR antagonists in treating balance disorders may also target synaptic mechanisms in the vestibular periphery, and that KCNQ channel modulators might offer similar therapeutic value.SIGNIFICANCE STATEMENT Targeting the efferent vestibular system (EVS) pharmacologically might prove useful in ameliorating some forms of vestibular dysfunction by modifying ongoing primary vestibular input. EVS activation engages several kinetically distinct synaptic processes that profoundly alter the discharge rate and sensitivity of first-order vestibular neurons. Efferent-mediated slow excitation of vestibular afferents is of considerable interest given its ability to elevate afferent activity over an extended time course. We demonstrate for the first time that efferent-mediated slow excitation of vestibular afferents is mediated by muscarinic acetylcholine receptor (mAChR) activation and the subsequent closure of KCNQ potassium channels. The clinical effectiveness of some anti-mAChR drugs in treating motion sickness suggest that we may, in fact, already be targeting the peripheral EVS.


Subject(s)
Cholinergic Agents/pharmacology , Excitatory Postsynaptic Potentials/physiology , Neurons, Afferent/physiology , Neurons, Efferent/physiology , Receptors, Muscarinic/metabolism , Synaptic Transmission/physiology , Vestibule, Labyrinth/cytology , Analysis of Variance , Animals , Biophysics , Calbindin 2/metabolism , Electric Stimulation , Ether-A-Go-Go Potassium Channels/metabolism , Evoked Potentials/drug effects , Excitatory Postsynaptic Potentials/drug effects , Female , KCNQ Potassium Channels/metabolism , Male , Neural Pathways/physiology , Neurons, Afferent/drug effects , Neurons, Efferent/drug effects , Patch-Clamp Techniques , Synaptic Transmission/drug effects , Turtles
3.
J Neurosci ; 35(8): 3625-43, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25716861

ABSTRACT

Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and ß2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and ß2 in associated vestibular ganglia.


Subject(s)
Motor Neurons/metabolism , Presynaptic Terminals/metabolism , Receptors, Cholinergic/metabolism , Vestibular Nerve/metabolism , Animals , Azetidines/pharmacology , Benzazepines/pharmacology , Bungarotoxins/pharmacology , Cholinergic Agonists/pharmacology , Cholinergic Antagonists/pharmacology , Conotoxins/pharmacology , Female , Male , Motor Neurons/drug effects , Motor Neurons/physiology , Picolines/pharmacology , Presynaptic Terminals/physiology , Protein Subunits/metabolism , Pyridines/pharmacology , Quinoxalines/pharmacology , Turtles , Varenicline , Vestibular Nerve/cytology , Vestibular Nerve/physiology
4.
J Vestib Res ; 23(3): 161-75, 2013.
Article in English | MEDLINE | ID: mdl-24177348

ABSTRACT

The vestibular labyrinth of nearly every vertebrate class receives a prominent efferent innervation that originates in the brainstem and ends as bouton terminals on vestibular hair cells and afferents in each end organ. Although the functional significance of this centrifugal pathway is not well understood, it is clear that efferent neurons, when electrically stimulated under experimental conditions, profoundly impact vestibular afferent discharge. Effects range from chiefly excitation in fish and mammalian vestibular afferents to a more heterogeneous mixture of inhibition and/or excitation in amphibians, reptiles, and birds. What accounts for these diverse response properties? Recent cellular and pharmacological characterization of efferent synaptic mechanisms in turtle offers some insight. In the turtle posterior crista, vestibular efferent neurons are predominantly cholinergic and the effects of efferent stimulation on vestibular afferent discharge can be ascribed to three distinct signaling pathways: (1) Hyperpolarization of type II hair cells mediated by α9/α10-nAChRs and SK-potassium channels; (2) Depolarization of bouton and calyx afferents via α4ß2*-containing nAChRs; and (3) A slow excitation of calyx afferents attributed to muscarinic AChRs. In this review, we discuss the evidence for these pathways in turtle and speculate on their role in mammalian vestibular efferent actions where synaptic mechanisms are largely unknown.


Subject(s)
Hair Cells, Vestibular/physiology , Neurons, Efferent/physiology , Receptors, Cholinergic/physiology , Animals , Female , Male , Mammals , Neurons, Afferent/physiology , Presynaptic Terminals , Receptors, Muscarinic/physiology , Receptors, Nicotinic/drug effects , Turtles/physiology , Vestibule, Labyrinth
SELECTION OF CITATIONS
SEARCH DETAIL
...