Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
J Biomech ; 153: 111585, 2023 05.
Article in English | MEDLINE | ID: mdl-37126884

ABSTRACT

The contractile elements in skeletal muscle fibers operate in series with elastic elements, tendons and potentially aponeuroses, in muscle-tendon units (MTUs). Elastic strain energy (ESE), arising from either work done by muscle fibers or the energy of the body, can be stored in these series elastic elements (SEEs). MTUs vary considerably in their design in terms of the relative lengths and stiffnesses of the muscle fibers and SEEs, and the force and work generating capacities of the muscle fibers. However, within an MTU it is thought that contractile and series elastic elements can be matched or tuned to maximize ESE storage. The use of ESE is thought to improve locomotor performance by enhancing contractile element power during activities such as jumping, attenuating contractile element power during activities such as landing, and reducing the metabolic cost of movement during steady-state activities such as walking and running. The effectiveness of MTUs in these potential roles is contingent on factors such as the source of mechanical energy, the control of the flow of energy, and characteristics of SEE recoil. Hence, we suggest that MTUs specialized for ESE storage may vary considerably in the structural, mechanical, and physiological properties of their components depending on their functional role and required versatility.


Subject(s)
Muscle, Skeletal , Running , Muscle, Skeletal/physiology , Tendons/physiology , Running/physiology , Muscle Contraction/physiology , Movement , Biomechanical Phenomena , Elasticity
3.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Article in English | MEDLINE | ID: mdl-36960844

ABSTRACT

Skeletal muscle powers animal movement, making it an important determinant of fitness. The classic excitation-contraction coupling, sliding-filament and crossbridge theories are thought to describe the processes of muscle activation and the generation of force, work and power. Here, we review how the comparative, realistic muscle physiology typified by Journal of Experimental Biology over the last 100 years has supported and refuted these theories. We examine variation in the contraction rates and force-length and force-velocity relationships predicted by these theories across diverse muscles, and explore what has been learnt from the use of workloop and force-controlled techniques that attempt to replicate aspects of in vivo muscle function. We suggest inclusion of features of muscle contraction not explained by classic theories in our routine characterization of muscles, and the use of phylogenetic comparative methods to allow exploration of the effects of factors such as evolutionary history, ecology, behavior and size on muscle physiology and mechanics. We hope that these future directions will improve our understanding of the mechanisms of muscle contraction, allow us to better characterize the variation in muscle performance possible, and enable us to infer adaptation.


Subject(s)
Muscle, Skeletal , Physiology, Comparative , Animals , Phylogeny , Muscle, Skeletal/physiology , Muscle Contraction/physiology , Movement
4.
Integr Comp Biol ; 58(2): 163-173, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30137314

ABSTRACT

Biological movement is an inherently dynamic process, characterized by large spatiotemporal variations in force and mechanical energy. Molecular level interactions between the contractile proteins actin and myosin do work, generating forces and transmitting them to the environment via the muscle's and supporting tissues' complex structures. Most existing theories of muscle contraction are derived from observations of muscle performance under simple, tightly controlled, in vitro or in situ conditions. These theories provide predictive power that falls off as we examine the more complicated action and movement regimes seen in biological movement. Our early and heavy focus on actin and myosin interactions have lead us to overlook other interactions and sources of force regulation. It increasingly appears that the structural heterogeneity, and micro-to-macro spatial scales of the force transmission pathways that exist between actin and myosin and the environment, determine muscle performance in ways that manifest most clearly under the dynamic conditions occurring during biological movement. Considering these interactions, along with the dynamics of force transmission tissues, actuators, and environmental physics have enriched our understanding of biological motion and force generation. This symposium brings together diverse investigators to consolidate our understanding of the role of spatial scale and structural heterogeneity role in muscle performance, with the hope of updating frameworks for understanding muscle contraction and predicting muscle performance in biological movement.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Actins/physiology , Animals , Biomechanical Phenomena , Humans , Myosins/physiology
5.
Integr Comp Biol ; 58(2): 174-185, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29873724

ABSTRACT

Skeletal muscle force is generated by cross-bridge interactions between the overlapping contractile proteins, actin and myosin. The geometry of this overlap gives us the force-length relationship in which maximum isometric force is generated at an intermediate, optimum, length. However, the force-length relationship is not constant; optimum length increases with decreasing muscle activation. This effect is not predicted from actin-myosin overlap. Here we present evidence that this activation-dependent shift in optimum length may be due to a series compliance within muscles. As muscles generate force during fixed-end contractions, fibers shorten against series compliance until forces equilibrate and they become isometric. Shortening against series-compliance is proportional to activation, and creates conditions under which shortening-induced force depression may suppress full force development. Greater shortening will result in greater force depression. Hence, optimum length may decrease as activation rises due to greater fiber shortening. We discuss explanations of such history dependence, giving a review of previously proposed processes and suggesting a novel mechanistic explanation for the most likely candidate process based on tropomyosin kinetics. We suggest this mechanism could change the relationship between actin-myosin overlap and cross-bridge binding potential, not only depressing force at any given length, but also altering the relationship between force and length. This would have major consequences for our understanding of in vivo muscle performance.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Humans
6.
Biomech Model Mechanobiol ; 16(5): 1633-1643, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28432448

ABSTRACT

The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle's ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.


Subject(s)
Muscle, Skeletal/physiology , Stress, Mechanical , Animals , Biomechanical Phenomena , Models, Biological , Muscle Contraction/physiology , Ranidae/physiology
7.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26817770

ABSTRACT

Skeletal muscle exhibits broad functional diversity, despite its inherent length and velocity constraints. The observed variation in morphology and physiology is assumed to have evolved to allow muscle to operate at its optimal length and velocity during locomotion. Here, we used the variation in optimum lengths and velocities that occurs with muscle activation level to experimentally test this assumption. Muscle ergometry and sonomicrometry were used to characterize force-length and power-velocity relationships, and in vivo operating lengths and velocities, at a range of activation levels. Operating lengths and velocities were mapped onto activation level specific force-length and power-velocity relationships to determine whether they tracked changing optima. Operating velocities decreased in line with decreased optimal velocities, suggesting that optimal velocities are always used. However, operating lengths did not change with changing optima. At high activation levels, fibres used an optimal range of lengths. However, at lower activation levels, fibres appeared to operate on the ascending limb of sub-maximally activated force-length relationships. This suggests that optimal lengths are only used when demand is greatest. This study provides the first mapping of operating lengths to activation level-specific optima, and as such, provides insight into our assumptions about the factors that determine muscle performance during locomotion.


Subject(s)
Locomotion , Models, Biological , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Bufo marinus/physiology
8.
Proc Biol Sci ; 281(1783): 20140002, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24695429

ABSTRACT

The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force-velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.


Subject(s)
Isometric Contraction , Muscle, Skeletal/physiology , Recruitment, Neurophysiological , Animals , Electromyography , Male , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...