Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(4): e0284102, 2023.
Article in English | MEDLINE | ID: mdl-37023093

ABSTRACT

Thoroughbred horses are bred for competitive racing and undergo intense training regimes. The maintenance of physical soundness and desirable behavioural characteristics are critical to the longevity of a racing career. Horses intended for Flat racing generally enter training as yearlings and undergo introductory training prior to exercise conditioning for racing. This period requires rapid adjustment to a novel environment. As a prey animal, a horse's 'fight-or-flight' response is highly adapted, in which a well-understood component of this response, the hypothalamic-pituitary-axis, is activated in response to a stress stimulus, releasing cortisol. In the Thoroughbred, a significant difference in salivary cortisol concentrations between pre- and post-first time ridden (i.e., first backing) by a jockey have previously been identified. Here, to test the hypothesis that salivary cortisol concentrations may be used to objectively detect individual variations in the acute physiological stress response we investigate individual variation in cortisol response to training milestones. Saliva samples were collected from a cohort of n = 96 yearling Flat racehorses, at the same training yard, across three timepoints at rest: before entering the training yard (n = 66), within three days of entry to the training yard (n = 67) and following 2-3 weeks in the training yard (n = 50). Salivary cortisol concentration was measured using an ELISA. There was no significant difference in cortisol concentration (ANOVA, P > 0.05) across the samples collected at timepoints at rest. Samples were also collected before and 30 minutes after exposure to three novel training events: first time long-reined (n = 6), first time backed by a jockey (n = 34), and first time ridden on the gallops (n = 10). Mean salivary cortisol concentration after all three novel training events was significantly higher than prior to the training event (Paired t-test, P <0.005). The ranges of post-event salivary cortisol concentration across all timepoints suggest individual variation in the measured stress response, reflecting individual differences in stress response to the early training environment. This measure may be used as an objective assessment of the stress response of Thoroughbred racehorses during training.


Subject(s)
Horse Diseases , Physical Conditioning, Animal , Running , Horses , Animals , Hydrocortisone , Physical Examination
2.
Anim Genet ; 54(4): 457-469, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36971191

ABSTRACT

Behavioural plasticity enables horses entering an exercise training programme to adapt with reduced stress. We characterised SNPs associated with behaviour in yearling Thoroughbred horses using genomics analyses for two phenotypes: (1) handler-assessed coping with early training events [coping] (n = 96); and (2) variation in salivary cortisol concentration at the first backing event [cortisol] (n = 34). Using RNA-seq derived gene expression data for amygdala and hippocampus tissues from n = 2 Thoroughbred stallions, we refined the SNPs to those with functional relevance to behaviour by cross-referencing to the 500 most highly expressed genes in each tissue. The SNPs of high significance (q < 0.01) were in proximity to genes (coping - GABARAP, NDM, OAZ1, RPS15A, SPARCL1, VAMP2; cortisol - CEBPA, COA3, DUSP1, HNRNPH1, RACK1) with biological functions in social behaviour, autism spectrum disorder, suicide, stress-induced anxiety and depression, Alzheimer's disease, neurodevelopmental disorders, neuroinflammatory disease, fear-induced behaviours and alcohol and cocaine addiction. The strongest association (q = 0.0002) was with NDN, a gene previously associated with temperament in cattle. This approach highlights functionally relevant genes in the behavioural adaptation of Thoroughbred horses that will contribute to the development of genetic markers to improve racehorse welfare.


Subject(s)
Autism Spectrum Disorder , Hydrocortisone , Horses/genetics , Animals , Male , Cattle , Genomics , Phenotype
3.
Commun Biol ; 5(1): 1320, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513809

ABSTRACT

Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.


Subject(s)
Genome-Wide Association Study , Genome , Horses/genetics , Animals , Phenotype , Genomics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...