Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Article in English | MEDLINE | ID: mdl-37632371

ABSTRACT

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Subject(s)
Hypertension , Pathology, Clinical , Humans , Rats , Mice , Animals , Rats, Inbred SHR , Kidney , Disease Models, Animal
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902363

ABSTRACT

Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice. EVs were isolated from transgenic mice overexpressing human renin in the liver (TtRhRen, hypertensive), OVE26 type 1 diabetic mice and wild-type (WT) mice. Protein content was analyzed using liquid chromatography-mass spectrometry. We identified 544 independent proteins, of which 408 were found in all groups, 34 were exclusive to WT, 16 were exclusive to OVE26 and 5 were exclusive to TTRhRen mice. Amongst the differentially expressed proteins, haptoglobin (HPT) was upregulated and ankyrin-1 (ANK1) was downregulated in OVE26 and TtRhRen mice compared with WT controls. Conversely, TSP4 and Co3A1 were upregulated and SAA4 was downregulated exclusively in diabetic mice; and PPN was upregulated and SPTB1 and SPTA1 were downregulated in hypertensive mice, compared to WT mice. Ingenuity pathway analysis identified enrichment in proteins associated with SNARE signaling, the complement system and NAD homeostasis in EVs from diabetic mice. Conversely, in EVs from hypertensive mice, there was enrichment in semaphroin and Rho signaling. Further analysis of these changes may improve understanding of vascular injury in hypertension and diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Extracellular Vesicles , Hypertension , Vascular System Injuries , Humans , Mice , Animals , Proteome , Mice, Transgenic
3.
PLoS One ; 18(2): e0281123, 2023.
Article in English | MEDLINE | ID: mdl-36730247

ABSTRACT

Chronic kidney disease (CKD) is a worldwide health burden with increases risk of end-stage renal function if left untreated. CKD induced in the context of metabolic syndrome (MS) increases risks of hypertension, hyperglycemia, excess body fat and dyslipidemia. To test if combining a high-fat diet (HFD) regimen onto the hypertensive/ diabetic phenotype would mimic features of MS induced-CKD in mice, hyperglycemia was induced in genetically hypertensive mice (Lin), followed by HFD regimen. For that, 8-week-old male were subjected to streptozotocin (STZ) intraperitoneal (i.p.) injections (50 mg/kg, 5 days consecutive). LinSTZ were fed a 60% kCal HFD for 8 weeks. Lin mice treated with STZ developed polydipsia, became hypertensive and hyperglycemic. HFD induced weight gain, protected against glomerular hypertrophy, scarring, and albuminuria at endpoint compared to regular diet fed LinSTZ. On the other hand, HFD induced steatosis, liver fibrosis, inflammation, and increase in AST/ALT ratio, characteristics of non-alcoholic liver disease. Taken together, our results show that LinSTZ mice fed a HFD did not lead to a more robust model of MS-induced CKD, protected against kidney injury, but inducing liver damage. More studies are necessary to understand the kidney protective mechanisms of HFD when superimposed with hypertension and type 1 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Hypertension , Renal Insufficiency, Chronic , Mice , Male , Animals , Diet, High-Fat/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Kidney/physiology , Liver , Hypertension/complications , Mice, Inbred C57BL
4.
Acta Neuropathol Commun ; 11(1): 19, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36691076

ABSTRACT

We recently discovered that the expression of PRKN, a young-onset Parkinson disease-linked gene, confers redox homeostasis. To further examine the protective effects of parkin in an oxidative stress model, we first combined the loss of prkn with Sod2 haploinsufficiency in mice. Although adult prkn-/-//Sod2± animals did not develop dopamine cell loss in the S. nigra, they had more reactive oxidative species and a higher concentration of carbonylated proteins in the brain; bi-genic mice also showed a trend for more nitrotyrosinated proteins. Because these redox changes were seen in the cytosol rather than mitochondria, we next explored the thiol network in the context of PRKN expression. We detected a parkin deficiency-associated increase in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in murine brain, PRKN-linked human cortex and several cell models. This shift resulted from enhanced recycling of GSSG back to GSH via upregulated glutathione reductase activity; it also correlated with altered activities of redox-sensitive enzymes in mitochondria isolated from mouse brain (e.g., aconitase-2; creatine kinase). Intriguingly, human parkin itself showed glutathione-recycling activity in vitro and in cells: For each GSSG dipeptide encountered, parkin regenerated one GSH molecule and was S-glutathionylated by the other (GSSG + P-SH [Formula: see text] GSH + P-S-SG), including at cysteines 59, 95 and 377. Moreover, parkin's S-glutathionylation was reversible by glutaredoxin activity. In summary, we found that PRKN gene expression contributes to the network of available thiols in the cell, including by parkin's participation in glutathione recycling, which involves a reversible, posttranslational modification at select cysteines. Further, parkin's impact on redox homeostasis in the cytosol can affect enzyme activities elsewhere, such as in mitochondria. We posit that antioxidant functions of parkin may explain many of its previously described, protective effects in vertebrates and invertebrates that are unrelated to E3 ligase activity.


Subject(s)
Glutathione , Proteins , Adult , Mice , Humans , Animals , Glutathione Disulfide/metabolism , Glutathione/metabolism , Proteins/metabolism , Oxidation-Reduction , Oxidative Stress , Ubiquitin-Protein Ligases/genetics , Antioxidants , Cysteine/metabolism , Brain/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Mammals/metabolism
5.
Diabetes ; 71(6): 1282-1298, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35275988

ABSTRACT

Excessive production of renal reactive oxygen species (ROS) plays a major role in diabetic kidney disease (DKD). Here, we provide key findings demonstrating the predominant pathological role of the pro-oxidant enzyme NADPH oxidase 5 (NOX5) in DKD, independent of the previously characterized NOX4 pathway. In patients with diabetes, we found increased expression of renal NOX5 in association with enhanced ROS formation and upregulation of ROS-sensitive factors early growth response 1 (EGR-1), protein kinase C-α (PKC-α), and a key metabolic gene involved in redox balance, thioredoxin-interacting protein (TXNIP). In preclinical models of DKD, overexpression of NOX5 in Nox4-deficient mice enhances kidney damage by increasing albuminuria and augmenting renal fibrosis and inflammation via enhanced ROS formation and the modulation of EGR1, TXNIP, ERK1/2, PKC-α, and PKC-ε. In addition, the only first-in-class NOX inhibitor, GKT137831, appears to be ineffective in the presence of NOX5 expression in diabetes. In vitro, silencing of NOX5 in human mesangial cells attenuated upregulation of EGR1, PKC-α, and TXNIP induced by high glucose levels, as well as markers of inflammation (TLR4 and MCP-1) and fibrosis (CTGF and collagens I and III) via reduction in ROS formation. Collectively, these findings identify NOX5 as a superior target in human DKD compared with other NOX isoforms such as NOX4, which may have been overinterpreted in previous rodent studies.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Fibrosis , Humans , Inflammation/metabolism , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism
7.
PLoS One ; 17(2): e0264136, 2022.
Article in English | MEDLINE | ID: mdl-35176122

ABSTRACT

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Subject(s)
Angiotensin II/toxicity , Disease Models, Animal , Glomerulosclerosis, Focal Segmental/pathology , Hypertension, Renal/pathology , Hypertension/complications , Nephritis/pathology , Nephrosclerosis/pathology , Animals , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Hypertension/chemically induced , Hypertension, Renal/etiology , Hypertension, Renal/metabolism , Male , Nephritis/etiology , Nephritis/metabolism , Nephrosclerosis/etiology , Nephrosclerosis/metabolism , Rats , Rats, Inbred SHR , Vasoconstrictor Agents/toxicity
8.
Antioxid Redox Signal ; 32(9): 618-635, 2020 03 20.
Article in English | MEDLINE | ID: mdl-31931619

ABSTRACT

Aims: Nicotinamide adenine dinucleotide phosphate oxidases (NOX-es) produce reactive oxygen species and modulate ß-cell insulin secretion. Islets of type 2 diabetic subjects present elevated expression of NOX5. Here, we sought to characterize regulation of NOX5 expression in human islets in vitro and to uncover the relevance of NOX5 in islet function in vivo using a novel mouse model expressing NOX5 in doxycycline-inducible, ß-cell-specific manner (RIP/rtTA/NOX5 mice). Results:In situ hybridization and immunohistochemistry employed on pancreatic sections demonstrated NOX5 messenger ribonucleic acid (mRNA) and protein expressions in human islets. In cultures of dispersed islets, NOX5 protein was observed in somatostatin-positive (δ) cells in basal (2.8 mM glucose) conditions. Small interfering ribonucleic acid (siRNA)-mediated knockdown of NOX5 in human islets cultured in basal glucose concentrations resulted in diminished glucose-induced insulin secretion (GIIS) in vitro. However, when islets were preincubated in high (16.7 mM) glucose media for 12 h, NOX5 appeared also in insulin-positive (ß) cells. In vivo, mice with ß-cell NOX5 expression developed aggravated impairment of GIIS compared with control mice when challenged with 14 weeks of high-fat diet. Similarly, in vitro palmitate preincubation resulted in more severe reduction of insulin release in islets of RIP/rtTA/NOX5 mice compared with their control littermates. Decreased insulin secretion was most distinct in response to theophylline stimulation, suggesting impaired cyclic adenosine monophosphate (cAMP)-mediated signaling due to increased phosphodiesterase activation. Innovation and Conclusions: Our data provide the first insight into the complex regulation and function of NOX5 in islets implying an important role for NOX5 in δ-cell-mediated intraislet crosstalk in physiological circumstances but also identifying it as an aggravating factor in ß-cell failure in diabetic conditions.


Subject(s)
Islets of Langerhans/metabolism , NADPH Oxidase 5/genetics , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Female , Humans , Insulin Secretion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , NADPH Oxidase 5/metabolism
9.
Clin Sci (Lond) ; 133(14): 1587-1602, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31308217

ABSTRACT

PBI-4050 (3-pentylbenzenacetic acid sodium salt), a novel first-in-class orally active compound that has completed clinical Phases Ib and II in subjects with chronic kidney disease (CKD) and metabolic syndrome respectively, exerts antifibrotic effects in several organs via a novel mechanism of action, partly through activation of the G protein receptor 40 (GPR40) receptor. Here we evaluate the effects of PBI-4050 in both WT and Gpr40-/- mice on adenine-induced tubulointerstitial injury, anemia and activation of the unfolded protein response (UPR) pathway. Adenine-induced CKD was achieved in 8-week-old C57BL/6 mice fed a diet supplemented with 0.25% adenine. After 1 week, PBI-4050 or vehicle was administered daily by oral-gavage for 3 weeks. Gpr40-/- mice were also subjected to adenine-feeding, with or without PBI-4050 treatment. PBI-4050 improved renal function and urine concentrating ability. Anemia was present in adenine-fed mice, while PBI-4050 blunted these effects and led to significantly higher plasma erythropoietin (EPO) levels. Adenine-induced renal fibrosis, endoplasmic reticulum (ER) stress and apoptosis were significantly decreased by PBI-4050. In parallel, Gpr40-/- mice were more susceptible to adenine-induced fibrosis, renal function impairment, anemia and ER stress compared with WT mice. Importantly, PBI-4050 treatment in Gpr40-/- mice failed to reduce renal injury in this model. Taken together, PBI-4050 prevented adenine-induced renal injury while these beneficial effects were lost upon Gpr40 deletion. These data reinforce PBI-4050's use as a renoprotective therapy and identify GPR40 as a crucial mediator of its beneficial effects.


Subject(s)
Acetates/administration & dosage , Adenine/adverse effects , Kidney Diseases/drug therapy , Kidney/injuries , Receptors, G-Protein-Coupled/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
10.
Diabetologia ; 62(9): 1712-1726, 2019 09.
Article in English | MEDLINE | ID: mdl-31222503

ABSTRACT

AIMS/HYPOTHESIS: Excessive production of reactive oxygen species (ROS) plays a detrimental role in the progression of diabetic kidney disease (DKD). Renal oxidative stress activates proinflammatory cytokines, chemokines and profibrotic factors in DKD. Increased expression of the prooxidant enzyme NADPH oxidase (NOX) 5 in kidneys of diabetic individuals has been hypothesised to correlate with renal injury and progression of DKD. Since the gene encoding NOX5 is not expressed in the mouse genome, we examined the effect of inducible human NOX5 expression in renal cells, selectively in either endothelial cells or vascular smooth muscle cells (VSMCs)/mesangial cells in a model of insulin-deficient diabetes, the Akita mouse. METHODS: Renal structural injury, including glomerulosclerosis, mesangial expansion and extracellular matrix protein accumulation, as well as renal inflammation, ROS formation and albuminuria, were examined in the NOX5 transgenic Akita mouse model of DKD. RESULTS: Expression of NOX5 in either endothelial cells or VSMCs/mesangial cells in diabetic Akita mice was associated with increased renal inflammation (monocyte chemoattractant protein-1, NF-κB and toll-like receptor-4) and glomerulosclerosis, as well as upregulation of protein kinase C-α and increased expression of extracellular matrix genes (encoding collagen III, fibronectin and α-smooth muscle actin) and proteins (collagen IV), most likely mediated via enhanced renal ROS production. The effect of VSMC/mesangial cell-specific NOX5 expression resulted in more pronounced renal fibrosis in comparison with endothelial cell-specific NOX5 expression in diabetic mice. In addition, albuminuria was significantly increased in diabetic VEcad+NOX5+ mice (1192 ± 194 µg/24 h) when compared with diabetic VEcad+NOX5- mice (770 ± 98 µg/24 h). Furthermore, the regulatory components of NOX5 activation, including heat shock protein 90 and transient receptor potential cation channel subfamily C member 6, were upregulated only in the presence of both NOX5 and diabetes. CONCLUSIONS/INTERPRETATION: The findings from this study highlight the importance of NOX5 in promoting diabetes-related renal injury and provide the rationale for the development of a selective NOX5 inhibitor for the prevention and/or treatment of DKD.


Subject(s)
Albuminuria/metabolism , Fibrosis/metabolism , Inflammation/metabolism , Kidney/metabolism , Albuminuria/pathology , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Disease Models, Animal , Fibrosis/pathology , Humans , Inflammation/pathology , Kidney/pathology , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , NADPH Oxidase 5/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
11.
Antioxid Redox Signal ; 30(15): 1817-1830, 2019 05 20.
Article in English | MEDLINE | ID: mdl-30070142

ABSTRACT

AIMS: Oxidative stress associated with a proinflammatory state occurs in endothelial dysfunction, hypertension, chronic kidney disease, and diabetes. The NADPH oxidase (Nox) family of reactive oxygen species (ROS) generating enzymes is implicated in these processes, yet little information regarding the role of Nox5 is available. Our aim was to investigate the role of Nox5 in promoting renal inflammation and identify mechanisms regulating its activity. RESULTS: Mice with podocyte-specific Nox5 (Nox5pod+) expression demonstrated greater glomerular inflammation and increased expression of Toll-like receptors (TLRs) and proinflammatory cytokines. In a lipopolysaccharide (LPS) model of acute kidney injury, Nox5pod+ and control littermates exhibited increased TLR and Nox1 expression. Compared with control littermates, Nox5pod+ animals developed greater glomerular inflammation and ROS production. Immortalized human podocytes (hPODs) incubated with LPS demonstrated TLR induction, increased Nox5 expression, and enhanced ROS production. Inhibition of interleukin-1 receptor-associated kinases (IRAK)-1 and -4 that lie downstream of TLR inhibited LPS-induced ROS production. Interaction between IRAK1 and Nox5 was confirmed by coimmunoprecipitation. Furthermore, LPS treatment of hPODs resulted in phosphorylation of threonine residue(s) in Nox5 that was attenuated by an IRAK1/4 inhibitor. Innovation and Conclusion: These results are the first to demonstrate that Nox5 is a downstream target of the TLR pathway and that Nox5-derived ROS may be modulated by IRAK1/4 activity. Nox5-derived ROS in podocytes can promote a proinflammatory state in the kidney via induction of cytokine expression and upregulation of TLRs leading to a feed-forward loop in which TLR activation enhances Nox5-mediated ROS production.


Subject(s)
NADPH Oxidase 5/genetics , Nephritis/etiology , Nephritis/metabolism , Podocytes/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , Animals , Biomarkers , Biopsy , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Inflammation Mediators/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Transgenic , NADPH Oxidase 5/metabolism , Nephritis/pathology , Phosphorylation
12.
Sci Rep ; 8(1): 11415, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061705

ABSTRACT

The renin-angiotensin system regulates blood pressure and fluid balance in the body primarily via angiotensin receptor 1 (AT1R). Renal AT1R was found to be primarily responsible for Ang II-mediated hypertension. G protein-coupled receptor kinase 2 (GRK2) modulates AT1R desensitization and increased GRK2 protein expression is reported in hypertensive patients. However, the consequences of GRK2 inhibition on kidney functions remain unknown. We employed shGRK2 knockdown mice (shGRK2 mice) to test the role of GRK2 in kidney development and function that can be ultimately linked to the hypertensive phenotype detected in shGRK2 mice. GRK2 knockdown reduced kidney size, nephrogenesis and glomerular count, and impaired glomerular filtration. Glomerular damage in adult shGRK2 mice was associated with increased renin- and AT1R-mediated production of reactive oxygen species. The AT1R blocker, Losartan, normalized elevated blood pressure and markedly improved glomerular filtration in the shGRK2 knockdown mice. Our findings provide evidence for the crucial role of GRK2 in renal regulation of blood pressure. It also suggests that the detrimental outcomes of GRK2 inhibitors on the kidney should be carefully examined when used as antihypertensive.


Subject(s)
Blood Pressure/physiology , G-Protein-Coupled Receptor Kinase 2/metabolism , Gene Knockdown Techniques , Kidney/injuries , Kidney/physiopathology , Animals , Blood Pressure/drug effects , G-Protein-Coupled Receptor Kinase 2/deficiency , Glomerular Filtration Rate , Kidney/drug effects , Kidney/pathology , Kidney Glomerulus/pathology , Kidney Glomerulus/physiopathology , Losartan/pharmacology , Mice, Inbred C57BL , Phenotype , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin/blood , Serum/metabolism
13.
J Am Heart Assoc ; 7(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29907654

ABSTRACT

BACKGROUND: NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS: Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.


Subject(s)
Calcium Signaling , Heart Diseases/enzymology , Hypertension/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , NADPH Oxidase 5/metabolism , Reactive Oxygen Species/metabolism , Vasoconstriction , Animals , Blood Pressure , Calmodulin/metabolism , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Heart Diseases/genetics , Heart Diseases/physiopathology , Humans , Hypertension/genetics , Hypertension/physiopathology , Insect Proteins/genetics , Insect Proteins/metabolism , Mice, Transgenic , Muscle, Smooth, Vascular/physiopathology , NADPH Oxidase 5/genetics , Oxidation-Reduction , Rhodnius , Vasodilation
14.
Clin Sci (Lond) ; 132(13): 1453-1470, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29739827

ABSTRACT

Neuronal ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that maintains intracellular ubiquitin pools and promotes axonal transport. Uchl1 deletion in mice leads to progressive axonal degeneration, affecting the dorsal root ganglion that harbors axons emanating to the kidney. Innervation is a crucial regulator of renal hemodynamics, though the contribution of neuronal UCHL1 to this is unclear. Immunofluorescence revealed significant neuronal UCHL1 expression in mouse kidney, including periglomerular axons. Glomerular filtration rate trended higher in 6-week-old Uchl1-/- mice, and by 12 weeks of age, these displayed significant glomerular hyperfiltration, coincident with the onset of neurodegeneration. Angiotensin converting enzyme inhibition had no effect on glomerular filtration rate of Uchl1-/- mice indicating that the renin-angiotensin system does not contribute to the observed hyperfiltration. DCE-MRI revealed increased cortical renal blood flow in Uchl1-/- mice, suggesting that hyperfiltration results from afferent arteriole dilation. Nonetheless, hyperglycemia, cyclooxygenase-2, and nitric oxide synthases were ruled out as sources of hyperfiltration in Uchl1-/- mice as glomerular filtration rate remained unchanged following insulin treatment, and cyclooxygenase-2 and nitric oxide synthase inhibition. Finally, renal nerve dysfunction in Uchl1-/- mice is suggested given increased renal nerve arborization, decreased urinary norepinephrine, and impaired vascular reactivity. Uchl1-deleted mice demonstrate glomerular hyperfiltration associated with renal neuronal dysfunction, suggesting that neuronal UCHL1 plays a crucial role in regulating renal hemodynamics.


Subject(s)
Glomerular Filtration Rate/physiology , Neurodegenerative Diseases/physiopathology , Ubiquitin Thiolesterase/physiology , Animals , Arterioles/physiopathology , Cyclooxygenase 2/metabolism , Glucose Intolerance/physiopathology , Kidney/innervation , Kidney/metabolism , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Nitric Oxide Synthase/metabolism , Renal Artery/physiopathology , Renal Circulation/physiology , Renin-Angiotensin System/physiology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Vascular Resistance/physiology
15.
Am J Physiol Renal Physiol ; 315(2): F353-F363, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29667913

ABSTRACT

Loss of ubiquitin COOH-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme required for neuronal function, led to hyperphosphatemia accompanied by phosphaturia in mice, while calcium homeostasis remained intact. We therefore investigated the mechanisms underlying the phosphate imbalance in Uchl1-/- mice. Interestingly, phosphaturia was not a result of lower renal brush border membrane sodium-phosphate cotransporter expression as sodium-phosphate cotransporter 2a and 2c expression levels was similar to wild-type levels. Plasma parathyroid hormone and fibroblast growth factor 23 levels were not different; however, fibroblast growth factor 23 mRNA levels were significantly increased in femur homogenates from Uchl1-/- mice. Full-length and soluble α-klotho levels were comparable in kidneys from wild-type and Uchl1-/- mice; however, soluble α-klotho was reduced in Uchl1-/- mice urine. Consistent with unchanged components of 1,25(OH)2D3 metabolism (i.e., CYP27B1 and CYP24A1), sodium-phosphate cotransporter 2b protein levels were not different in ileum brush borders from Uchl1-/- mice, suggesting that the intestine is not the source of hyperphosphatemia. Nonetheless, when Uchl1-/- mice were fed a low-phosphate diet, plasma phosphate, urinary phosphate, and fractional excretion of phosphate were significantly attenuated and comparable to levels of low-phosphate diet-fed wild-type mice. Our findings demonstrate that Uchl1-deleted mice exhibit perturbed phosphate homeostasis, likely consequent to decreased urinary soluble α-klotho, which can be rescued with a low-phosphate diet. Uchl1-/- mice may provide a useful mouse model to study mild perturbations in phosphate homeostasis.


Subject(s)
Diet , Glucuronidase/deficiency , Hyperphosphatemia/enzymology , Hypophosphatemia, Familial/enzymology , Kidney/enzymology , Phosphates/metabolism , Ubiquitin Thiolesterase/deficiency , Animals , Calcitriol/blood , Disease Models, Animal , Femur/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Deletion , Genetic Predisposition to Disease , Glucuronidase/urine , Homeostasis , Hyperphosphatemia/blood , Hyperphosphatemia/genetics , Hyperphosphatemia/urine , Hypophosphatemia, Familial/blood , Hypophosphatemia, Familial/genetics , Hypophosphatemia, Familial/urine , Intestinal Absorption , Klotho Proteins , Mice, Knockout , Parathyroid Hormone/blood , Phenotype , Phosphates/blood , Phosphates/urine , Ubiquitin Thiolesterase/genetics
16.
J Extracell Vesicles ; 7(1): 1432206, 2018.
Article in English | MEDLINE | ID: mdl-29435202

ABSTRACT

Tubulointerstitial fibrosis is a hallmark of advanced diabetic kidney disease that is linked to a decline in renal function, however the pathogenic mechanisms are poorly understood. Microparticles (MPs) are 100-1000 nm vesicles shed from injured cells that are implicated in intercellular signalling. Our lab recently observed the formation of MPs from podocytes and their release into urine of animal models of type 1 and 2 diabetes and in humans with type 1 diabetes. The purpose of the present study was to examine the role of podocyte MPs in tubular epithelial cell fibrotic responses. MPs were isolated from the media of differentiated, untreated human podocytes (hPODs) and administered to cultured human proximal tubule epithelial cells (PTECs). Treatment with podocyte MPs increased p38 and Smad3 phosphorylation and expression of the extracellular matrix (ECM) proteins fibronectin and collagen type IV. MP-induced responses were attenuated by co-treatment with the p38 inhibitor SB202190. A transforming growth factor beta (TGF-ß) receptor inhibitor (LY2109761) blocked MP-induced Smad3 phosphorylation and ECM protein expression but not p38 phosphorylation suggesting that these responses occurred downstream of p38. Finally, blockade of the class B scavenger receptor CD36 completely abrogated MP-mediated p38 phosphorylation, downstream Smad3 activation and fibronectin/collagen type IV induction. Taken together our results suggest that podocyte MPs interact with proximal tubule cells and induce pro-fibrotic responses. Such interactions may contribute to the development of tubular fibrosis in glomerular disease.

17.
Am J Pathol ; 188(5): 1132-1148, 2018 05.
Article in English | MEDLINE | ID: mdl-29454750

ABSTRACT

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term post-acute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.


Subject(s)
Kidney Diseases/pathology , Receptors, G-Protein-Coupled/metabolism , Renal Insufficiency, Chronic/pathology , Animals , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
18.
Diabetes ; 66(10): 2691-2703, 2017 10.
Article in English | MEDLINE | ID: mdl-28747378

ABSTRACT

NADPH oxidase-derived excessive production of reactive oxygen species (ROS) in the kidney plays a key role in mediating renal injury in diabetes. Pathological changes in diabetes include mesangial expansion and accumulation of extracellular matrix (ECM) leading to glomerulosclerosis. There is a paucity of data about the role of the Nox5 isoform of NADPH oxidase in animal models of diabetic nephropathy since Nox5 is absent in the mouse genome. Thus, we examined the role of Nox5 in human diabetic nephropathy in human mesangial cells and in an inducible human Nox5 transgenic mouse exposed to streptozotocin-induced diabetes. In human kidney biopsies, Nox5 was identified to be expressed in glomeruli, which appeared to be increased in diabetes. Colocalization demonstrated Nox5 expression in mesangial cells. In vitro, silencing of Nox5 in human mesangial cells was associated with attenuation of the hyperglycemia and TGF-ß1-induced enhanced ROS production, increased expression of profibrotic and proinflammatory mediators, and increased TRPC6, PKC-α, and PKC-ß expression. In vivo, vascular smooth muscle cell/mesangial cell-specific overexpression of Nox5 in a mouse model of diabetic nephropathy showed enhanced glomerular ROS production, accelerated glomerulosclerosis, mesangial expansion, and ECM protein (collagen IV and fibronectin) accumulation as well as increased macrophage infiltration and expression of the proinflammatory chemokine MCP-1. Collectively, this study provides evidence of a role for Nox5 and its derived ROS in promoting progression of diabetic nephropathy.


Subject(s)
Diabetic Nephropathies/metabolism , NADPH Oxidases/metabolism , Animals , Blotting, Western , Cell Line , Diabetic Nephropathies/genetics , Enzyme-Linked Immunosorbent Assay , Humans , Inflammation/metabolism , Kidney/metabolism , Kidney Glomerulus/metabolism , Mesangial Cells/metabolism , Mice , Mice, Transgenic , NADPH Oxidases/genetics , Protein Kinase C beta/metabolism , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
Antioxid Redox Signal ; 25(12): 642-656, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27245461

ABSTRACT

AIMS: Cyclooxygenase inhibition by non-steroidal anti-inflammatory drugs is contraindicated in hypertension, as it may reduce glomerular filtration rate (GFR) and renal blood flow. However, the identity of the specific eicosanoid and receptor underlying these effects is not known. We hypothesized that vascular smooth muscle prostaglandin E2 (PGE2) E-prostanoid 4 (EP4) receptor deletion predisposes to renal injury via unchecked vasoconstrictive actions of angiotensin II (AngII) in a hypertension model. Mice with inducible vascular smooth muscle cell (VSMC)-specific EP4 receptor deletion were generated and subjected to AngII-induced hypertension. RESULTS: EP4 deletion was verified by PCR of aorta and renal vessels, as well as functionally by loss of PGE2-mediated mesenteric artery relaxation. Both AngII-treated groups became similarly hypertensive, whereas albuminuria, foot process effacement, and renal hypertrophy were exacerbated in AngII-treated EP4VSMC-/- but not in EP4VSMC+/+ mice and were associated with glomerular scarring, tubulointerstitial injury, and reduced GFR. AngII-treated EP4VSMC-/- mice exhibited capillary damage and reduced renal perfusion as measured by fluorescent bead microangiography and magnetic resonance imaging, respectively. NADPH oxidase 2 (Nox2) expression was significantly elevated in AngII-treated EP4-/- mice. EP4-receptor silencing in primary VSMCs abolished PGE2 inhibition of AngII-induced Nox2 mRNA and superoxide production. INNOVATION: These data suggest that vascular EP4 receptors buffer the actions of AngII on renal hemodynamics and oxidative injury. CONCLUSION: EP4 agonists may, therefore, protect against hypertension-associated kidney damage. Antioxid. Redox Signal. 25, 642-656.


Subject(s)
Dinoprostone/genetics , Hypertension/genetics , Kidney Diseases/drug therapy , Oxidative Stress/drug effects , Receptors, Prostaglandin E, EP4 Subtype/genetics , Angiotensin II/administration & dosage , Angiotensin II/adverse effects , Animals , Cyclooxygenase Inhibitors/administration & dosage , Disease Models, Animal , Glomerular Filtration Rate/drug effects , Hemodynamics , Humans , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/pathology , Kidney/blood supply , Kidney/diagnostic imaging , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Mesenteric Arteries/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Renal Circulation/drug effects
20.
Clin Sci (Lond) ; 128(8): 465-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25630236

ABSTRACT

Since the first demonstration of Nox enzyme expression in the kidney in the early 1990s and the subsequent identification of Nox4, or RENOX, a decade later, it has become apparent that the Nox family of reactive oxygen species (ROS) generating enzymes plays an integral role in the normal physiological function of the kidney. As our knowledge of Nox expression patterns and functions in various structures and specialized cell types within the kidney grows, so does the realization that Nox-derived oxidative stress contributes significantly to a wide variety of renal pathologies through their ability to modify lipids and proteins, damage DNA and activate transcriptional programmes. Diverse studies demonstrate key roles for Nox-derived ROS in kidney fibrosis, particularly in settings of chronic renal disease such as diabetic nephropathy. As the most abundant Nox family member in the kidney, much emphasis has been placed on the role of Nox4 in this setting. However, an ever growing body of work continues to uncover key roles for other Nox family members, not only in diabetic kidney disease, but in a diverse array of renal pathological conditions. The objective of the present review is to highlight the latest novel developments in renal Nox biology with an emphasis not only on diabetic nephropathy but many of the other renal disease contexts where oxidative stress is implicated.


Subject(s)
Kidney Diseases/enzymology , NADPH Oxidases/metabolism , Animals , Humans , Isoenzymes/metabolism , Kidney Diseases/pathology , NADPH Oxidases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...