Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochemistry ; 40(47): 14302-8, 2001 Nov 27.
Article in English | MEDLINE | ID: mdl-11714284

ABSTRACT

The catalytic activity of glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inhibited allosterically by IIA(Glc) (previously known as III(Glc)), the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system. A sequentially contiguous portion of glycerol kinase undergoes an induced fit conformational change involving coil, alpha-helix, and 3(10)-helix upon IIA(Glc) binding. A second induced fit occurs upon binding of Zn(II) to a novel intermolecular site, which increases complex stability by cation-promoted association. Eight of the ten sequentially contiguous amino acids are substituted with alanine to evaluate the roles of these positions in complex formation. Effects of the substitutions reveal both favorable and antagonistic contributions of the normal amino acids to complex formation, and Zn(II) reverses these contributions for two of the amino acids. The consequences of some of the substitutions for IIA(Glc) inhibition are consistent with changes in the intermolecular interactions seen in the crystal structures. However, for the amino acids that are located in the region that is alpha-helical in the absence of IIA(Glc), the effects of the substitutions are not consistent with changes in intermolecular interactions but with increased stability of the alpha-helical region due to the higher alpha-helix propensity of alanine. The reduced affinity for IIA(Glc) binding seen for these variants is consistent with predictions of Freire and co-workers [Luque, I., and Freire, E. (2000) Proteins: Struct., Funct., Genet. 4, 63-71]. These variants show also increased cation-promoted association by Zn(II) so that the energetic contribution of Zn(II) to complex formation is doubled. The similarity of effects of the alanine substitutions of the amino acids in the alpha-helical region for IIA(Glc) binding affinity and cation-promoted association by Zn(II) indicates that they function as a cooperative unit.


Subject(s)
Escherichia coli/enzymology , Glycerol Kinase/metabolism , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Zinc/metabolism , Allosteric Regulation , Binding Sites , Cations/metabolism , Enzyme Stability , Escherichia coli Proteins , Glycerol Kinase/antagonists & inhibitors , Glycerol Kinase/genetics , Mutation , Protein Structure, Secondary
2.
J Bacteriol ; 183(11): 3336-44, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11344141

ABSTRACT

Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization and expression of the glpK gene. Genetics methods based on homologous recombination are used to place glpK alleles with known specific mutations into the chromosomal context of the glpK gene in three different genetic backgrounds. The alleles encode glycerol kinases with normal catalytic properties and specific alterations of allosteric regulatory properties, as determined by in vitro characterization of the purified enzymes. The E. coli strains with these alleles display the glycerol kinase regulatory phenotypes that are expected on the basis of the in vitro characterizations. Strains with different glpR alleles are used to assess the relationships between allosteric regulation of glycerol kinase and specific repression in glucose control of the expression of the glpK gene. Results of these studies show that glucose control of glycerol utilization and glycerol kinase expression is not affected by the loss of IIA(Glc) inhibition of glycerol kinase. In contrast, fructose 1,6-bisphosphate inhibition of glycerol kinase is the dominant allosteric control mechanism, and glucose is unable to control glycerol utilization in its absence. Specific repression is not required for glucose control of glycerol utilization, and the relative roles of various mechanisms for glucose control (catabolite repression, specific repression, and inducer exclusion) are different for glycerol utilization than for lactose utilization.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Glucose/metabolism , Glycerol Kinase/metabolism , Glycerol/metabolism , Allosteric Regulation , Culture Media , Escherichia coli/enzymology , Escherichia coli/growth & development , Glycerol Kinase/genetics
3.
J Bacteriol ; 183(4): 1459-61, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11157961

ABSTRACT

Alleles of glpR associated with the same GlpR(-) phenotype produce substitutions in different conserved portions of the glycerol 3-phosphate repressor which are not part of the helix-turn-helix motif. Analysis of the effects on growth and enzyme expression show that glucose repression of glycerol utilization is not dependent on a functional repressor.


Subject(s)
Bacterial Proteins , Escherichia coli/genetics , Glycerol Kinase/biosynthesis , Repressor Proteins/genetics , Transcription Factors , Alleles , Enzyme Repression , Escherichia coli Proteins , Glucose/pharmacology , Glycerol/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...