Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 318(6): C1294-C1304, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348179

ABSTRACT

The serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD). However, little is known about mechanisms regulating the iSERT variant, and a clearer understanding is warranted for targeting SERT for the treatment of gut disorders. The current studies examined the expression of iSERT across different human intestinal regions and investigated its regulation by HNF4α (hepatic nuclear factor-4α), a transcription factor important for diverse cellular functions. iSERT mRNA abundance was highest in the human ileum and Caco-2 cell line. iSERT mRNA expression was downregulated by loss of HNF4α (but not HNF1α, HNF1ß, or FOXA1) in Caco-2 cells. Overexpression of HNF4α increased iSERT mRNA concomitant with an increase in SERT protein. Progressive promoter deletion and site-directed mutagenesis revealed that the HNF4α response element spans nucleotides -1,163 to -1150 relative to the translation start site. SERT mRNA levels in the intestine were drastically reduced in the intestine-specific HNF4α-knockout mice relative to HNF4αFL/FL mice. Both HNF4α and SERT mRNA levels were also downregulated in mouse model of ileitis (SAMP) compared with AKR control mice. These results establish the transcriptional regulation of iSERT at the gut-specific internal promoter (hSERTp2) and have identified HNF4α as a critical modulator of basal SERT expression in the intestine.


Subject(s)
Epithelial Cells/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Ileitis/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Caco-2 Cells , Disease Models, Animal , Epithelial Cells/pathology , Hepatocyte Nuclear Factor 4/deficiency , Hepatocyte Nuclear Factor 4/genetics , Humans , Ileitis/genetics , Ileitis/pathology , Ileum/pathology , Intestinal Mucosa/pathology , Male , Mice, Knockout , Promoter Regions, Genetic , Response Elements , Serotonin Plasma Membrane Transport Proteins/genetics , Transcription, Genetic
2.
RNA Biol ; 16(11): 1643-1657, 2019 11.
Article in English | MEDLINE | ID: mdl-31390935

ABSTRACT

Noncoding RNA (ncRNA) modulation of gene expression has now been ubiquitously observed across all domains of life. An increasingly apparent role of ncRNAs is to coordinate changes in gene expressions in response to environmental stress. Salmonella enterica, a common food-born pathogen, is known for its striking ability to survive, adapt, and thrive in various unfavourable environments which makes it a particularly difficult pathogen to eliminate as well as an interesting model in which to study ncRNA contributions to cellular stress response. Mounting evidence now suggests that small RNAs (sRNAs) represent key regulators of Salmonella stress adaptation. Approximately 50-500 nucleotides in length, sRNAs regulate gene expression through complementary base pairing with molecular targets and have recently been suggested to outnumber protein-coding genes in bacteria. In this work, we employ small RNA transcriptome sequencing to characterize changes in the sRNA profiles of Salmonella in response to desiccation. In all, we identify 102 previously annotated sRNAs significantly differentially expressed during desiccation; and excitingly, 71 novel sRNAs likewise differentially expressed. Small transcript northern blotting and qRT-PCRs confirm the identities and expressions of several of our novel sRNAs, and computational analyses indicate the majority are highly conserved and structurally related to characterized sRNAs. Predicted sRNA targets include several proteins necessary for desiccation survival and this, in part, suggests a role for desiccation-regulated sRNAs in this stress response. Furthermore, we find individual knock-outs of two of the novel sRNAs identified herein, either sRNA1320429 or sRNA3981754, significantly impairs the ability of Salmonella to survive desiccation, confirming their involvements (and suggesting the potential involvements of other sRNAs we identify in this work) in the Salmonella response to desiccation.


Subject(s)
Gene Expression Profiling/methods , RNA, Small Untranslated/genetics , Salmonella typhimurium/physiology , Desiccation , Gene Expression Regulation, Bacterial , Molecular Sequence Annotation , RNA, Bacterial/genetics , Salmonella typhimurium/genetics , Sequence Analysis, RNA , Stress, Physiological
4.
DNA Repair (Amst) ; 66-67: 42-49, 2018.
Article in English | MEDLINE | ID: mdl-29723708

ABSTRACT

Environmental exposures, reactive by-products of cellular metabolism, and spontaneous deamination events result in a spectrum of DNA adducts that if un-repaired threaten genomic integrity by inducing mutations, increasing instability, and contributing to the initiation and progression of cancer. Assessment of DNA adducts in cells and tissues is critical for genotoxic and carcinogenic evaluation of chemical exposure and may provide insight into the etiology of cancer. Numerous methods to characterize the formation of DNA adducts and their retention for risk assessment have been developed. However, there are still significant drawbacks to the implementation and wide-spread use of these methods, because they often require a substantial amount of biological sample, highly specialized expertise and equipment, and depending on technique, may be limited to the detection and quantification of only a handful of DNA adducts at a time. There is a pressing need for high throughput, easy to implement assays that can assess a broad spectrum of DNA lesions, allowing for faster evaluation of chemical exposures and assessment of the retention of adducts in biological samples. Here, we describe a new methodology, Repair Assisted Damage Detection (RADD), which utilizes a DNA damage processing repair enzyme cocktail to detect and modify sites of DNA damage for a subsequent gap filling reaction that labels the DNA damage sites. This ability to detect and label a broad spectrum of DNA lesions within cells, offers a novel and easy to use tool for assessing levels of DNA damage in cells that have been exposed to environmental agents or have natural variations in DNA repair capacity.


Subject(s)
DNA Adducts/analysis , Mutagenicity Tests/methods , Cell Line, Tumor , DNA Adducts/metabolism , DNA Repair , Environmental Exposure/adverse effects , Humans
5.
J Vis Exp ; (127)2017 09 05.
Article in English | MEDLINE | ID: mdl-28930988

ABSTRACT

Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.


Subject(s)
DNA Breaks, Double-Stranded , DNA Breaks, Single-Stranded , DNA Repair , DNA/radiation effects , Animals , CHO Cells , Cricetulus , Humans , Lasers
6.
Mob Genet Elements ; 1(1): 8-17, 2011 May.
Article in English | MEDLINE | ID: mdl-22016841

ABSTRACT

MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3'UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify. Of note, the most enlightening aspect of miR function-the mRNAs they target-continues to be elusive. Descriptions of the molecular origins of independent miR molecules currently support the hypothesis that miR hairpin generation is based on the adjacent insertion of two related transposable elements (TEs) at one genomic locus. Thus transcription across such TE interfaces establishes many, if not the majority of functional miRs. The implications of these findings are substantial for understanding how TEs confer increased genomic fitness, describing miR transcriptional regulations and making accurate miR target predictions. In this work, we have performed a comprehensive analysis of the genomic events responsible for the formation of all currently annotated miR loci. We find that the connection between miRs and transposable elements is more significant than previously appreciated, and more broadly, supports an important role for repetitive elements in miR origin, expression and regulatory network formation. Further, we demonstrate the utility of these findings in miR target prediction. Our results greatly expand the existing repertoire of defined miR origins, detailing the formation of 2,392 of 15,176 currently recognized miR genomic loci and supporting a mobile genetic element model for the genomic establishment of functional miRs.

7.
BMC Cancer ; 11: 347, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21831295

ABSTRACT

BACKGROUND: Activation Induced cytidine Deaminase (AID) targets the immunoglobulin genes of activated B cells, where it converts cytidine to uracil to induce mutagenesis and recombination. While essential for immunoglobulin gene diversification, AID misregulation can result in genomic instability and oncogenic transformation. This is classically illustrated in Burkitt's lymphoma, which is characterized by AID-induced mutation and reciprocal translocation of the c-MYC oncogene with the IgH loci. Originally thought to be B cell-specific, AID now appears to be misexpressed in several epithelial cancers, raising the specter that AID may also participate in non-B cell carcinogenesis. METHODS: The mutagenic potential of AID argues for the existence of cellular regulators capable of repressing inappropriate AID expression. MicroRNAs (miRs) have this capacity, and we have examined the publically available human AID EST dataset for miR complementarities to the human AID 3'UTR. In this work, we have evaluated the capacity of two candidate miRs to repress human AID expression in MCF-7 breast carcinoma cells. RESULTS: We have discovered moderate miR-155 and pronounced miR-93 complementary target sites encoded within the human AID mRNA. Luciferase reporter assays indicate that both miR-93 and miR-155 can interact with the 3'UTR of AID to block expression. In addition, over-expression of either miR in MCF-7 cells reduces endogenous AID protein, but not mRNA, levels. Similarly indicative of AID translational regulation, depletion of either miR in MCF-7 cells increases AID protein levels without concurrent increases in AID mRNA. CONCLUSIONS: Together, our findings demonstrate that miR-93 and miR-155 constitutively suppress AID translation in MCF-7 cells, suggesting widespread roles for these miRs in preventing genome cytidine deaminations, mutagenesis, and oncogenic transformation. In addition, our characterization of an obscured miR-93 target site located within the AID 3'UTR supports the recent suggestion that many miR regulations have been overlooked due to the prevalence of truncated 3'UTR annotations.


Subject(s)
Cytidine Deaminase/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , 3' Untranslated Regions/genetics , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cytidine Deaminase/metabolism , Female , HEK293 Cells , Humans , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
8.
PLoS One ; 5(7): e11641, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20661291

ABSTRACT

BACKGROUND: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt's B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed V(H) and Sgamma3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci. CONCLUSIONS/SIGNIFICANCE: Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.


Subject(s)
Cytidine Deaminase/metabolism , Histones/metabolism , Ubiquitination/physiology , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Chromatin Immunoprecipitation , Humans , Mice , Microscopy, Confocal , Microscopy, Fluorescence , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...