Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1886, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019967

ABSTRACT

Activating signal co-integrator 1 complex (ASCC) subunit 3 (ASCC3) supports diverse genome maintenance and gene expression processes, and contains tandem Ski2-like NTPase/helicase cassettes crucial for these functions. Presently, the molecular mechanisms underlying ASCC3 helicase activity and regulation remain unresolved. We present cryogenic electron microscopy, DNA-protein cross-linking/mass spectrometry as well as in vitro and cellular functional analyses of the ASCC3-TRIP4 sub-module of ASCC. Unlike the related spliceosomal SNRNP200 RNA helicase, ASCC3 can thread substrates through both helicase cassettes. TRIP4 docks on ASCC3 via a zinc finger domain and stimulates the helicase by positioning an ASC-1 homology domain next to the C-terminal helicase cassette of ASCC3, likely supporting substrate engagement and assisting the DNA exit. TRIP4 binds ASCC3 mutually exclusively with the DNA/RNA dealkylase, ALKBH3, directing ASCC3 for specific processes. Our findings define ASCC3-TRIP4 as a tunable motor module of ASCC that encompasses two cooperating NTPase/helicase units functionally expanded by TRIP4.


Subject(s)
DNA Helicases , Nucleoside-Triphosphatase , Nucleoside-Triphosphatase/metabolism , DNA Helicases/metabolism , Spliceosomes/metabolism , RNA Helicases/metabolism , DNA/metabolism
2.
Commun Biol ; 5(1): 736, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869234

ABSTRACT

Precursor messenger RNA splicing is a highly regulated process, mediated by a complex RNA-protein machinery, the spliceosome, that encompasses several hundred proteins and five small nuclear RNAs in humans. Emerging evidence suggests that the spatial organization of splicing factors and their spatio-temporal dynamics participate in the regulation of splicing. So far, methods to manipulate the spatial distribution of splicing factors in a temporally defined manner in living cells are missing. Here, we describe such an approach that takes advantage of a reversible chemical dimerizer, and outline the requirements for efficient, reversible re-localization of splicing factors to selected sub-nuclear compartments. In a proof-of-principle study, the partial re-localization of the PRPF38A protein to the nuclear lamina in HEK293T cells induced a moderate increase in intron retention. Our approach allows fast and reversible re-localization of splicing factors, has few side effects and can be applied to many splicing factors by fusion of a protein tag through genome engineering. Apart from the systematic analysis of the spatio-temporal aspects of splicing regulation, the approach has a large potential for the fast induction and reversal of splicing switches and can reveal mechanisms of splicing regulation in native nuclear environments.


Subject(s)
Nuclear Lamina , Spliceosomes , HEK293 Cells , Humans , Nuclear Lamina/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism
3.
J Virol ; 96(8): e0033122, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35380459

ABSTRACT

The reovirus attachment protein σ1 mediates cell attachment and receptor binding and is thought to undergo conformational changes during viral disassembly. σ1 is a trimeric filamentous protein with an α-helical coiled-coil tail, a triple-ß-spiral body, and a globular head. At the trimer interface, the head domain features an unusual and conserved aspartic acid cluster, which forms the only significant intratrimer interactions in the head and must be protonated to allow trimer formation. To define the role of pH on σ1 stability and conformation, we tested its domains over a wide range of pH values. We show that all domains of σ1 are remarkably thermostable, even at the low pH of the stomach. We determined the optimal pH for stability to be between pHs 5 and 6, a value close to the pH of the endosome and of the jejunum. The σ1 head is stable at acidic and neutral pH but detrimerizes at basic pH. When Asp345 in the aspartic acid cluster is mutated to asparagine (D345N), the σ1 head loses stability at low pH and is more prone to detrimerize. Although the D345N mutation does not affect σ1 binding affinity for the JAM-A receptor, the overall binding stoichiometry is reduced by one-third. The additional replacement of the neighboring His349 with alanine disrupts inner trimer surface interactions, leading to a less thermostable and monomeric σ1 D345N head that fails to bind the JAM-A receptor. When the body is expressed together with the head domain, the thermostability is restored and the stoichiometry of the binding to JAM-A receptor is preserved. Our results confirm a fundamental role of the aspartic acid cluster as a pH-dependent molecular switch controlling trimerization and enhancing thermostability of σ1, which represent essential requirements to accomplish reovirus infection and entry and might be common mechanisms among other enteric viruses. IMPORTANCE Enteric viruses withstand the highly acidic environment of the stomach during transmission, and many of them use low pH as a trigger for conformational changes associated with entry. For many nonenveloped viruses, the structural basis of these effects is not clear. We have investigated the stability of the reovirus attachment protein σ1 over a range of pHs and find it to be remarkably thermostable, especially at low pH. We identify a role for the aspartic acid cluster in maintaining σ1 thermostability, trimeric organization, and binding to JAM-A receptor especially at the gastric pH reovirus has to withstand while passing the stomach. The understanding of monomer-trimer dynamics within σ1 enhances our knowledge of reovirus entry and has implications for stability and transmission of other enteric viruses.


Subject(s)
Aspartic Acid , Reoviridae , Viral Nonstructural Proteins , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Polymers/chemistry , Protein Stability , Reoviridae/genetics , Reoviridae/metabolism , Reoviridae Infections/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
4.
Nat Commun ; 11(1): 5535, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139697

ABSTRACT

The ASCC3 subunit of the activating signal co-integrator complex is a dual-cassette Ski2-like nucleic acid helicase that provides single-stranded DNA for alkylation damage repair by the α-ketoglutarate-dependent dioxygenase AlkBH3. Other ASCC components integrate ASCC3/AlkBH3 into a complex DNA repair pathway. We mapped and structurally analyzed interacting ASCC2 and ASCC3 regions. The ASCC3 fragment comprises a central helical domain and terminal, extended arms that clasp the compact ASCC2 unit. ASCC2-ASCC3 interfaces are evolutionarily highly conserved and comprise a large number of residues affected by somatic cancer mutations. We quantified contributions of protein regions to the ASCC2-ASCC3 interaction, observing that changes found in cancers lead to reduced ASCC2-ASCC3 affinity. Functional dissection of ASCC3 revealed similar organization and regulation as in the spliceosomal RNA helicase Brr2. Our results delineate functional regions in an important DNA repair complex and suggest possible molecular disease principles.


Subject(s)
DNA Helicases/genetics , DNA Repair , Neoplasms/genetics , Nuclear Proteins/genetics , Amino Acid Sequence , Conserved Sequence/genetics , DNA Helicases/isolation & purification , DNA Helicases/metabolism , HEK293 Cells , Humans , Mutation , Nuclear Proteins/isolation & purification , Nuclear Proteins/metabolism , Protein Binding/genetics , Protein Conformation, alpha-Helical/genetics , Protein Domains/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/metabolism
5.
Nat Commun ; 9(1): 2220, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880797

ABSTRACT

The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.


Subject(s)
Drosophila Proteins/metabolism , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U2 Small Nuclear/metabolism , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , Binding Sites/genetics , Crystallography, X-Ray , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/physiology , Protein Domains/physiology , RNA, Small Nuclear/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/isolation & purification , Ribonucleoprotein, U2 Small Nuclear/chemistry , Substrate Specificity/physiology
6.
Elife ; 42015 Aug 14.
Article in English | MEDLINE | ID: mdl-26274777

ABSTRACT

Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.


Subject(s)
Axonal Transport , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , rab3 GTP-Binding Proteins/metabolism , Animals , Binding Sites , Carrier Proteins/genetics , DNA Mutational Analysis , Drosophila Proteins/genetics , Optical Imaging , Protein Binding , Protein Interaction Mapping , Protein Transport
7.
Genes Dev ; 27(5): 525-40, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23442228

ABSTRACT

Yeast U5 small nuclear ribonucleoprotein particle (snRNP) is assembled via a cytoplasmic precursor that contains the U5-specific Prp8 protein but lacks the U5-specific Brr2 helicase. Instead, pre-U5 snRNP includes the Aar2 protein not found in mature U5 snRNP or spliceosomes. Aar2p and Brr2p bind competitively to a C-terminal region of Prp8p that comprises consecutive RNase H-like and Jab1/MPN-like domains. To elucidate the molecular basis for this competition, we determined the crystal structure of Aar2p in complex with the Prp8p RNase H and Jab1/MPN domains. Aar2p binds on one side of the RNase H domain and extends its C terminus to the other side, where the Jab1/MPN domain is docked onto a composite Aar2p-RNase H platform. Known Brr2p interaction sites of the Jab1/MPN domain remain available, suggesting that Aar2p-mediated compaction of the Prp8p domains sterically interferes with Brr2p binding. Moreover, Aar2p occupies known RNA-binding sites of the RNase H domain, and Aar2p interferes with binding of U4/U6 di-snRNA to the Prp8p C-terminal region. Structural and functional analyses of phospho-mimetic mutations reveal how phosphorylation reduces affinity of Aar2p for Prp8p and allows Brr2p and U4/U6 binding. Our results show how Aar2p regulates both protein and RNA binding to Prp8p during U5 snRNP assembly.


Subject(s)
Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Survival , Mutation , Phosphorylation , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary
8.
Genes Dev ; 25(15): 1601-12, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21764848

ABSTRACT

Little is known about how particle-specific proteins are assembled on spliceosomal small nuclear ribonucleoproteins (snRNPs). Brr2p is a U5 snRNP-specific RNA helicase required for spliceosome catalytic activation and disassembly. In yeast, the Aar2 protein is part of a cytoplasmic precursor U5 snRNP that lacks Brr2p and is replaced by Brr2p in the nucleus. Here we show that Aar2p and Brr2p bind to different domains in the C-terminal region of Prp8p; Aar2p interacts with the RNaseH domain, whereas Brr2p interacts with the Jab1/MPN domain. These domains are connected by a long, flexible linker, but the Aar2p-RNaseH complex sequesters the Jab1/MPN domain, thereby preventing binding by Brr2p. Aar2p is phosphorylated in vivo, and a phospho-mimetic S253E mutation in Aar2p leads to disruption of the Aar2p-Prp8p complex in favor of the Brr2p-Prp8p complex. We propose a model in which Aar2p acts as a phosphorylation-controlled U5 snRNP assembly factor that regulates the incorporation of the particle-specific Brr2p. The purpose of this regulation may be to safeguard against nonspecific RNA binding to Prp8p and/or premature activation of Brr2p activity.


Subject(s)
Nuclear Proteins/metabolism , Ribonucleoprotein, U5 Small Nuclear/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/metabolism , Models, Molecular , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phosphorylation , Protein Binding , Protein Structure, Tertiary , RNA Helicases/chemistry , RNA Helicases/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...