Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Tomography ; 3(1): 23-32, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28691102

ABSTRACT

This study investigates the effectiveness of hundreds of texture features extracted from voxel-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parametric maps for early prediction of breast cancer response to neoadjuvant chemotherapy (NAC). In total, 38 patients with breast cancer underwent DCE-MRI before (baseline) and after the first of the 6-8 NAC cycles. Quantitative pharmacokinetic (PK) parameters and semiquantitative metrics were estimated from DCE-MRI time-course data. The residual cancer burden (RCB) index value was computed based on pathological analysis of surgical specimens after NAC completion. In total, 1043 texture features were extracted from each of the 13 parametric maps of quantitative PK or semiquantitative metric, and their capabilities for early prediction of RCB were examined by correlating feature changes between the 2 MRI studies with RCB. There were 1069 pairs of feature-map combinations that showed effectiveness for response prediction with 4 correlation coefficients >0.7. The 3-dimensional gray-level cooccurrence matrix was the most effective feature extraction method for therapy response prediction, and, in general, the statistical features describing texture heterogeneity were the most effective features. Quantitative PK parameters, particularly those estimated with the shutter-speed model, were more likely to generate effective features for prediction response compared with the semiquantitative metrics. The best feature-map pair could predict pathologic complete response with 100% sensitivity and 100% specificity using our cohort. In conclusion, breast tumor heterogeneity in microvasculature as measured by texture features of voxel-based DCE-MRI parametric maps could be a useful biomarker for early prediction of NAC response.

2.
Transl Oncol ; 9(1): 8-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26947876

ABSTRACT

The purpose is to compare quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) metrics with imaging tumor size for early prediction of breast cancer response to neoadjuvant chemotherapy (NACT) and evaluation of residual cancer burden (RCB). Twenty-eight patients with 29 primary breast tumors underwent DCE-MRI exams before, after one cycle of, at midpoint of, and after NACT. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed with the standard Tofts and Shutter-Speed models (TM and SSM). After one NACT cycle the percent changes of DCE-MRI parameters K(trans) (contrast agent plasma/interstitium transfer rate constant), ve (extravascular and extracellular volume fraction), kep (intravasation rate constant), and SSM-unique τi (mean intracellular water lifetime) are good to excellent early predictors of pathologic complete response (pCR) vs. non-pCR, with univariate logistic regression C statistics value in the range of 0.804 to 0.967. ve values after one cycle and at NACT midpoint are also good predictors of response, with C ranging 0.845 to 0.897. However, RECIST LD changes are poor predictors with C = 0.609 and 0.673, respectively. Post-NACT K(trans), τi, and RECIST LD show statistically significant (P < .05) correlations with RCB. The performances of TM and SSM analyses for early prediction of response and RCB evaluation are comparable. In conclusion, quantitative DCE-MRI parameters are superior to imaging tumor size for early prediction of therapy response. Both TM and SSM analyses are effective for therapy response evaluation. However, the τi parameter derived only with SSM analysis allows the unique opportunity to potentially quantify therapy-induced changes in tumor energetic metabolism.

3.
Tomography ; 2(4): 308-316, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28066805

ABSTRACT

This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change.

4.
NMR Biomed ; 27(7): 760-73, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24798066

ABSTRACT

Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Intracellular Space/metabolism , Magnetic Resonance Imaging/methods , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Size , Contrast Media , Female , Humans , Kinetics , Permeability , Water
5.
Clin Cancer Res ; 19(24): 6902-11, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24132922

ABSTRACT

PURPOSE: We conducted a phase I trial of the addition of sorafenib to a chemoradiotherapy regimen in patients with high-risk (intermediate/high grade, >5 cm) extremity soft tissue sarcoma undergoing limb salvage surgery. We conducted a correlative study of quantitative dynamic contrast-enhanced MRI (DCE-MRI) to assess response to treatment. EXPERIMENTAL DESIGN: Patients were treated at increasing dose levels of sorafenib (200 mg daily, 400 mg daily, 400 mg twice daily) initiated 14 days before three preoperative and three postoperative cycles of epirubicin/ifosfamide. Radiation (28 Gy) was administered during cycle 2 with epirubicin omitted. The primary objective was to determine the maximum tolerated dose (MTD) of sorafenib. DCE-MRI was conducted at baseline, after 2 weeks of sorafenib, and before surgery. The imaging data were subjected to quantitative pharmacokinetic analyses. RESULTS: Eighteen subjects were enrolled, of which 16 were evaluable. The MTD of sorafenib was 400 mg daily. Common grade 3-4 adverse events included neutropenia (94%), hypophosphatemia (75%), anemia (69%), thrombocytopenia (50%), and neutropenic fever/infection (50%). Of note, 38% developed wound complications requiring surgical intervention. The rate of ≥95% histopathologic tumor necrosis was 44%. Changes in DCE-MRI biomarker ΔK(trans) after 2 weeks of sorafenib correlated with histologic response (R(2) = 0.67, P = 0.012) at surgery. CONCLUSION: The addition of sorafenib to preoperative chemoradiotherapy is feasible and warrants further investigation in a larger trial. DCE-MRI detected changes in tumor perfusion after 2 weeks of sorafenib and may be a minimally invasive tool for rapid assessment of drug effect in soft tissue sarcoma.


Subject(s)
Niacinamide/analogs & derivatives , Phenylurea Compounds/administration & dosage , Sarcoma/drug therapy , Sarcoma/radiotherapy , Adult , Chemoradiotherapy , Combined Modality Therapy , Female , Humans , Magnetic Resonance Imaging , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Niacinamide/administration & dosage , Preoperative Period , Radiography , Sarcoma/diagnostic imaging , Sarcoma/pathology , Sorafenib , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...