Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 206(3): 1024-1037, 2015 May.
Article in English | MEDLINE | ID: mdl-25599833

ABSTRACT

The plastid-encoded plastid RNA polymerase (PEP) represents the major transcription machinery in mature chloroplasts. Proteomic studies identified four plastome- and at least ten nuclear-encoded proteins making up this multimeric enzyme. Depletion of single subunits is known to result in strongly diminished PEP activity causing severe defects in chloroplast biogenesis. Here, we characterized one PEP subunit in maize, ZmpTAC12, and investigated the molecular basis underlying PEP-deficiency in Zmptac12 mutants. We show that the ZmpTAC12 gene encodes two different protein isoforms, both of which localize dually in chloroplasts and nuclei. Moreover, both variants assemble into the PEP-complex. Analysis of PEP-complex assembly in various maize mutants lacking different PEP-complex components demonstrates that ZmpTAC12, ZmpTAC2, ZmpTAC10 and ZmMurE are each required to accumulate a fully assembled PEP-complex. Antibodies to ZmpTAC12 coimmunoprecipitate a subset of plastid RNAs that are synthesized by PEP-dependent transcription. Gel mobility shift analyses with recombinant ZmpTAC12 revealed binding capabilities with ssRNA and ssDNA, but not dsDNA. Collectively these data demonstrate that ZmpTAC12 is required for the proper build-up of the PEP-complex and that it interacts with single-stranded nucleic acids.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , Plant Proteins/chemistry , Protein Subunits/chemistry , Zea mays/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/physiology , Gene Expression , Genome, Plant , Molecular Sequence Data , Plant Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/genetics , Zea mays/metabolism
2.
Front Plant Sci ; 3: 257, 2012.
Article in English | MEDLINE | ID: mdl-23181068

ABSTRACT

Plant photosynthesis takes place in specialized cell organelles, the chloroplasts, which perform all essential steps of this process. The proteins involved in photosynthesis are encoded by genes located on the plastid and nuclear genomes. Proper function and regulation of light harvesting and energy fixation thus requires a tight coordination of the gene expression machineries in the two genetic compartments. This is achieved by a bi-directional exchange of information between nucleus and plastids. Signals emerging from plastids report the functional and developmental state of the organelle to the nucleus and initiate distinct nuclear gene expression profiles, which trigger responses that support or improve plastid functions. Recent research indicated that this signaling is absolutely essential for plant growth and development. Reduction/oxidation (redox) signals from photosynthesis are key players in this information network since they do report functional disturbances in photosynthesis, the primary energy source of plants. Such disturbances are caused by environmental fluctuations for instance in illumination, temperature, or water availability. These environmental changes affect the linear electron flow of photosynthesis and result in changes of the redox state of the components involved [e.g., the plastoquinone (PQ) pool] or coupled to it (e.g., the thioredoxin pool). Thus, the changes in redox state directly reflect the environmental impact and serve as immediate plastidial signals to the nucleus. The triggered responses range from counterbalancing reactions within the physiological range up to severe stress responses including cell death. This review focuses on physiological redox signals from photosynthetic electron transport (PET), their relation to the environment, potential transduction pathways to the nucleus and their impact on nuclear gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...