Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2793: 85-100, 2024.
Article in English | MEDLINE | ID: mdl-38526725

ABSTRACT

Bacteriophage T7 is an intracellular virus that recognizes its host via tail and tail fiber proteins known as receptor-binding proteins (RBPs). The RBPs attach to a specific lipopolysaccharide (LPS) displayed on the host. While there are various reports of phage host range expansion resulting from mutations in the RBP encoding genes, there is little evidence for contraction of host range. Notably, most experimental systems have not monitored changes in host range in the presence of several hosts simultaneously. Here, we use a continuous evolution system to show that T7 phages grown in the presence of five restrictive strains and one permissive host, each with a different LPS, gradually cease to recognize the restrictive strains. Remarkably, this result was obtained in experiments with six different permissive hosts. The altered specificity is due to mutations in the RBPs as determined by gene sequencing. The results of using this system demonstrate a major role for RBPs in restricting the range of futile infections, and this process can be harnessed to reduce the host range in applications such as recognition and elimination of a specific bacterial serotype by bacteriophages.


Subject(s)
Bacteriophage T7 , Bacteriophages , Bacteriophage T7/genetics , Lipopolysaccharides/metabolism , Bacteriophages/genetics , Protein Binding , Carrier Proteins/metabolism , Host Specificity
2.
Vaccines (Basel) ; 11(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36992165

ABSTRACT

In a recent study, we demonstrated that vaccination with the polymeric F1 capsule antigen of the plague pathogen Yersinia pestis led to the rapid induction of a protective humoral immune response via the pivotal activation of innate-like B1b cells. Conversely, the monomeric version of F1 failed to promptly protect vaccinated animals in this model of the bubonic plague. In this study, we examined the ability of F1 to confer the rapid onset of protective immunity in the more challenging mouse model of the pneumonic plague. Vaccination with one dose of F1 adsorbed on aluminum hydroxide elicited effective protection against subsequent lethal intranasal exposure to a fully virulent Y. pestis strain within a week. Interestingly, the addition of the LcrV antigen shortened the time required for achieving such rapid protective immunity to 4-5 days after vaccination. As found previously, the polymeric structure of F1 was essential in affording the accelerated protective response observed by covaccination with LcrV. Finally, in a longevity study, a single vaccination with polymeric F1 induced a higher and more uniform humoral response than a similar vaccination with monomeric F1. However, in this setting, the dominant contribution of LcrV to long-lasting immunity against a lethal pulmonary challenge was reiterated.

3.
Vaccines (Basel) ; 10(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36560529

ABSTRACT

SARS-CoV-2 is evolving with increased transmission, host range, pathogenicity, and virulence. The original and mutant viruses escape host innate (Interferon) immunity and adaptive (Antibody) immunity, emphasizing unmet needs for high-yield, commercial-scale manufacturing to produce inexpensive vaccines/boosters for global/equitable distribution. We developed DYAI-100A85, a SARS-CoV-2 spike receptor binding domain (RBD) subunit antigen vaccine expressed in genetically modified thermophilic filamentous fungus, Thermothelomyces heterothallica C1, and secreted at high levels into fermentation medium. The RBD-C-tag antigen strongly binds ACE2 receptors in vitro. Alhydrogel®'85'-adjuvanted RDB-C-tag-based vaccine candidate (DYAI-100A85) demonstrates strong immunogenicity, and antiviral efficacy, including in vivo protection against lethal intranasal SARS-CoV-2 (D614G) challenge in human ACE2-transgenic mice. No loss of body weight or adverse events occurred. DYAI-100A85 also demonstrates excellent safety profile in repeat-dose GLP toxicity study. In summary, subcutaneous prime/boost DYAI-100A85 inoculation induces high titers of RBD-specific neutralizing antibodies and protection of hACE2-transgenic mice against lethal challenge with SARS-CoV-2. Given its demonstrated safety, efficacy, and low production cost, vaccine candidate DYAI-100 received regulatory approval to initiate a Phase 1 clinical trial to demonstrate its safety and efficacy in humans.

4.
Viruses ; 14(4)2022 03 26.
Article in English | MEDLINE | ID: mdl-35458417

ABSTRACT

Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals-a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.


Subject(s)
Bacteriophages , Phage Therapy , Plague , Yersinia pestis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Humans , Mice , Plague/drug therapy
5.
Sci Rep ; 10(1): 307, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941920

ABSTRACT

Bacteriophage T7 is an intracellular parasite that recognizes its host via its tail and tail fiber proteins, known as receptor-binding proteins (RBPs). The RBPs attach to specific lipopolysaccharide (LPS) features on the host. Various studies have shown expansion of the phage's host range via mutations in the genes encoding the RBPs, whereas only a few have shown contraction of its host range. Furthermore, most experimental systems have not monitored the alteration of host range in the presence of several hosts simultaneously. Here we show that T7 phage grown in the presence of five restrictive strains and one permissive host, each with a different LPS form, gradually avoids recognition of the restrictive strains. Remarkably, avoidance of the restrictive strains was repeated in different experiments using six different permissive hosts. The evolved phages carried mutations that changed their specificity, as determined by sequencing of the genes encoding the RBPs. This system demonstrates a major role for RBPs in narrowing the range of futile infections. The system can be harnessed for host-range contraction in applications such as detection or elimination of a specific bacterial serotype by bacteriophages.


Subject(s)
Bacteriophage T7/metabolism , Evolution, Molecular , Host Specificity , Bacteriophage T7/pathogenicity , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipopolysaccharides/metabolism , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...