Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Alzheimers Dement ; 20(5): 3179-3192, 2024 05.
Article in English | MEDLINE | ID: mdl-38491912

ABSTRACT

BACKGROUND: With the availability of disease-modifying therapies for Alzheimer's disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS: High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aß)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS: The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION: The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET.


Subject(s)
Algorithms , Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Brain , Mass Spectrometry , Peptide Fragments , Positron-Emission Tomography , tau Proteins , Humans , Amyloid beta-Peptides/blood , Female , Male , tau Proteins/blood , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Aged , Peptide Fragments/blood , Brain/diagnostic imaging , Brain/metabolism , Biomarkers/blood , Middle Aged , Aged, 80 and over , ROC Curve
2.
Sleep ; 47(1)2024 01 11.
Article in English | MEDLINE | ID: mdl-38011629

ABSTRACT

STUDY OBJECTIVES: Given the established racial disparities in both sleep health and dementia risk for African American populations, we assess cross-sectional and longitudinal associations of self-report sleep duration (SRSD) and daytime sleepiness with plasma amyloid beta (Aß) and cognition in an African American (AA) cohort. METHODS: In a cognitively unimpaired sample drawn from the African Americans Fighting Alzheimer's in Midlife (AA-FAiM) study, data on SRSD, Epworth Sleepiness Scale, demographics, and cognitive performance were analyzed. Aß40, Aß42, and the Aß42/40 ratio were quantified from plasma samples. Cross-sectional analyses explored associations between baseline predictors and outcome measures. Linear mixed-effect regression models estimated associations of SRSD and daytime sleepiness with plasma Aß and cognitive performance levels and change over time. RESULTS: One hundred and forty-seven participants comprised the cross-sectional sample. Baseline age was 63.2 ±â€…8.51 years. 69.6% self-identified as female. SRSD was 6.4 ±â€…1.1 hours and 22.4% reported excessive daytime sleepiness. The longitudinal dataset included 57 participants. In fully adjusted models, neither SRSD nor daytime sleepiness is associated with cross-sectional or longitudinal Aß. Associations with level and trajectory of cognitive test performance varied by measure of sleep health. CONCLUSIONS: SRSD was below National Sleep Foundation recommendations and daytime sleepiness was prevalent in this cohort. In the absence of observed associations with plasma Aß, poorer self-reported sleep health broadly predicted poorer cognitive function but not accelerated decline. Future research is necessary to understand and address modifiable sleep mechanisms as they relate to cognitive aging in AA at disproportionate risk for dementia. CLINICAL TRIAL INFORMATION: Not applicable.


Subject(s)
Dementia , Disorders of Excessive Somnolence , Sleep Initiation and Maintenance Disorders , Aged , Female , Humans , Middle Aged , Amyloid beta-Peptides , Black or African American , Cognition , Cross-Sectional Studies , Disorders of Excessive Somnolence/complications , Sleep Duration , Male
3.
Alzheimers Dement (N Y) ; 9(3): e12414, 2023.
Article in English | MEDLINE | ID: mdl-37752907

ABSTRACT

Introduction: It is critical to develop more inclusive Alzheimer's disease (AD) research protocols to ensure that historically excluded groups are included in preclinical research and have access to timely diagnosis and treatment. If validated in racialized groups, plasma AD biomarkers and measures of subtle cognitive dysfunction could provide avenues to expand diversity in preclinical AD research. We sought to evaluate the utility of two easily obtained, low-burden disease markers, plasma amyloid beta (Aß)42/40, and intra-individual cognitive variability (IICV), to predict concurrent and longitudinal cognitive performance in a sample of Black adults. Methods: Two hundred fifty-seven Black participants enrolled in the African Americans Fighting Alzheimer's in Midlife (AA-FAIM) study underwent at least one cognitive assessment visit; a subset of n = 235 had plasma samples. Baseline IICV was calculated as the standard deviation across participants' z scores on five cognitive measures: Rey Auditory Verbal Learning Test Delayed Recall, Trail Making Test Parts A and B (Trails A and B), and Boston Naming Test. Using mixed effects regression models, we compared concurrent and longitudinal models to baseline plasma Aß42/40 or IICV by age interactions. PrecivityAD assays quantified baseline plasma Aß42/40. Results: IICV was associated with concurrent/baseline performance on several outcomes but did not modify associations between age and cognitive decline. In contrast, plasma Aß42/40 was unrelated to baseline cognitive performance, but a pattern emerged in interactions with age in longitudinal models of Trails A and B and Rey Auditory Verbal Learning Test total learning trials. Although not significant after correcting for multiple comparisons, low Aß42/40 was associated with faster cognitive declines over time. Discussion: Our results are promising as they extend existing findings to an Black American sample using low-cost, low-burden methods that can be implemented outside of a research center, thus supporting efforts for inclusive AD biomarker research.

4.
JAMA Netw Open ; 5(4): e228392, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35446396

ABSTRACT

Importance: The diagnostic evaluation for Alzheimer disease may be improved by a blood-based diagnostic test identifying presence of brain amyloid plaque pathology. Objective: To determine the clinical performance associated with a diagnostic algorithm incorporating plasma amyloid-ß (Aß) 42:40 ratio, patient age, and apoE proteotype to identify brain amyloid status. Design, Setting, and Participants: This cohort study includes analysis from 2 independent cross-sectional cohort studies: the discovery cohort of the Plasma Test for Amyloidosis Risk Screening (PARIS) study, a prospective add-on to the Imaging Dementia-Evidence for Amyloid Scanning study, including 249 patients from 2018 to 2019, and MissionAD, a dataset of 437 biobanked patient samples obtained at screenings during 2016 to 2019. Data were analyzed from May to November 2020. Exposures: Amyloid detected in blood and by positron emission tomography (PET) imaging. Main Outcomes and Measures: The main outcome was the diagnostic performance of plasma Aß42:40 ratio, together with apoE proteotype and age, for identifying amyloid PET status, assessed by accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: All 686 participants (mean [SD] age 73.2 [6.3] years; 368 [53.6%] men; 378 participants [55.1%] with amyloid PET findings) had symptoms of mild cognitive impairment or mild dementia. The AUC of plasma Aß42:40 ratio for PARIS was 0.79 (95% CI, 0.73-0.85) and 0.86 (95% CI, 0.82-0.89) for MissionAD. Ratio cutoffs for Aß42:40 based on the Youden index were similar between cohorts (PARIS: 0.089; MissionAD: 0.092). A logistic regression model (LRM) incorporating Aß42:40 ratio, apoE proteotype, and age improved diagnostic performance within each cohort (PARIS: AUC, 0.86 [95% CI, 0.81-0.91]; MissionAD: AUC, 0.89 [95% CI, 0.86-0.92]), and overall accuracy was 78% (95% CI, 72%-83%) for PARIS and 83% (95% CI, 79%-86%) for MissionAD. The model developed on the prospectively collected samples from PARIS performed well on the MissionAD samples (AUC, 0.88 [95% CI, 0.84-0.91]; accuracy, 78% [95% CI, 74%-82%]). Training the LRM on combined cohorts yielded an AUC of 0.88 (95% CI, 0.85-0.91) and accuracy of 81% (95% CI, 78%-84%). The output of this LRM is the Amyloid Probability Score (APS). For clinical use, 2 APS cutoff values were established yielding 3 categories, with low, intermediate, and high likelihood of brain amyloid plaque pathology. Conclusions and Relevance: These findings suggest that this blood biomarker test could allow for distinguishing individuals with brain amyloid-positive PET findings from individuals with amyloid-negative PET findings and serve as an aid for Alzheimer disease diagnosis.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Amyloid , Amyloid beta-Peptides/analysis , Apolipoproteins E/genetics , Cognitive Dysfunction/diagnostic imaging , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Peptide Fragments , Plaque, Amyloid/diagnostic imaging , Positron-Emission Tomography , Probability , Prospective Studies
5.
Clin Chim Acta ; 519: 267-275, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34015303

ABSTRACT

BACKGROUND: There is an unmet need for an accessible, less invasive, cost-effective method to facilitate clinical trial enrollment and aid in clinical Alzheimer's disease (AD) diagnosis. APOE genotype affects the clearance and deposition of amyloid-beta (Aß) with APOE4 carriers having increased risk while APOE2 alleles appear to be protective. Lower plasma Aß42/40 correlates with brain amyloidosis. In response, C2N has developed the PrecivityAD™ test; plasma LC-MS/MS assays for Aß isoform quantitation and qualitative APOE isoform-specific proteotyping. METHODS: In accord with CLIA standards, we developed and validated assay performance: precision, accuracy, linearity, limit of detection (LoD), interferences. RESULTS: Within-day precision varied from 1.5-3.0% (Aß40) and 2.5-8.4% (Aß42). Total (within-lab) variability was 2.7-7.7% (Aß40) and 3.1-9.5% (Aß42). Aß40 quantitation was linear from 10 to 1780 pg/mL; Aß42 was linear from 2 to 254 pg/mL. LoD was 11 and 2 pg/mL for Aß40 and Aß42, respectively. APOE proteotypes were 100% concordant with genotype, while LoD (fM) was much lower than APOE concentrations observed in plasma (mM). CONCLUSIONS: The PrecivityAD™ assays are precise, accurate, sensitive, and linear over a wide analytical range, free from significant interferences, and suitable for use in the clinical laboratory.


Subject(s)
Alzheimer Disease , Amyloidosis , Amyloid beta-Peptides/metabolism , Amyloidosis/diagnosis , Amyloidosis/genetics , Apolipoprotein E4 , Apolipoproteins E/genetics , Biomarkers , Brain/metabolism , Chromatography, Liquid , Humans , Peptide Fragments , Tandem Mass Spectrometry
6.
Mol Neurodegener ; 16(1): 30, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33933117

ABSTRACT

BACKGROUND: The development of blood-based biomarker tests that are accurate and robust for Alzheimer's disease (AD) pathology have the potential to aid clinical diagnosis and facilitate enrollment in AD drug trials. We developed a high-resolution mass spectrometry (MS)-based test that quantifies plasma Aß42 and Aß40 concentrations and identifies the ApoE proteotype. We evaluated robustness, clinical performance, and commercial viability of this MS biomarker assay for distinguishing brain amyloid status. METHODS: We used the novel MS assay to analyze 414 plasma samples that were collected, processed, and stored using site-specific protocols, from six independent US cohorts. We used receiver operating characteristic curve (ROC) analyses to assess assay performance and accuracy for predicting amyloid status (positive, negative, and standard uptake value ratio; SUVR). After plasma analysis, sites shared brain amyloid status, defined using diverse, site-specific methods and cutoff values; amyloid PET imaging using various tracers or CSF Aß42/40 ratio. RESULTS: Plasma Aß42/40 ratio was significantly (p < 0.001) lower in the amyloid positive vs. negative participants in each cohort. The area under the ROC curve (AUC-ROC) was 0.81 (95% CI = 0.77-0.85) and the percent agreement between plasma Aß42/40 and amyloid positivity was 75% at the optimal (Youden index) cutoff value. The AUC-ROC (0.86; 95% CI = 0.82-0.90) and accuracy (81%) for the plasma Aß42/40 ratio improved after controlling for cohort heterogeneity. The AUC-ROC (0.90; 95% CI = 0.87-0.93) and accuracy (86%) improved further when Aß42/40, ApoE4 copy number and participant age were included in the model. CONCLUSIONS: This mass spectrometry-based plasma biomarker test: has strong diagnostic performance; can accurately distinguish brain amyloid positive from amyloid negative individuals; may aid in the diagnostic evaluation process for Alzheimer's disease; and may enhance the efficiency of enrolling participants into Alzheimer's disease drug trials.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid beta-Peptides/blood , Apolipoproteins E/blood , Peptide Fragments/blood , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amyloid/analysis , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/blood , Apolipoprotein E4/genetics , Area Under Curve , Biomarkers , Blood Specimen Collection/methods , Brain/diagnostic imaging , Brain Chemistry , Chromatography, Liquid , Cohort Studies , Female , Gene Dosage , Humans , Middle Aged , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , Predictive Value of Tests , ROC Curve , Tandem Mass Spectrometry
7.
Toxicol Appl Pharmacol ; 323: 53-65, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28315356

ABSTRACT

Sacubitril/valsartan (LCZ696) is the first angiotensin receptor neprilysin inhibitor approved to reduce cardiovascular mortality and hospitalization in patients with heart failure with reduced ejection fraction. As neprilysin (NEP) is one of several enzymes known to degrade amyloid-ß (Aß), there is a theoretical risk of Aß accumulation following long-term NEP inhibition. The primary objective of this study was to evaluate the potential effects of sacubitril/valsartan on central nervous system clearance of Aß isoforms in cynomolgus monkeys using the sensitive Stable Isotope Labeling Kinetics (SILK™)-Aß methodology. The in vitro selectivity of valsartan, sacubitril, and its active metabolite sacubitrilat was established; sacubitrilat did not inhibit other human Aß-degrading metalloproteases. In a 2-week study, sacubitril/valsartan (50mg/kg/day) or vehicle was orally administered to female cynomolgus monkeys in conjunction with SILK™-Aß. Despite low cerebrospinal fluid (CSF) and brain penetration, CSF exposure to sacubitril was sufficient to inhibit NEP and resulted in an increase in the elimination half-life of Aß1-42 (65.3%; p=0.026), Aß1-40 (35.2%; p=0.04) and Aßtotal (29.8%; p=0.04) acutely; this returned to normal as expected with repeated dosing for 15days. CSF concentrations of newly generated Aß (AUC(0-24h)) indicated elevations in the more aggregable form Aß1-42 on day 1 (20.4%; p=0.039) and day 15 (34.7%; p=0.0003) and in shorter forms Aß1-40 (23.4%; p=0.009), Aß1-38 (64.1%; p=0.0001) and Aßtotal (50.45%; p=0.00002) on day 15. However, there were no elevations in any Aß isoforms in the brains of these monkeys on day 16. In a second study cynomolgus monkeys were administered sacubitril/valsartan (300mg/kg) or vehicle control for 39weeks; no microscopic brain changes or Aß deposition, as assessed by immunohistochemical staining, were present. Further clinical studies are planned to address the relevance of these findings.


Subject(s)
Aminobutyrates/toxicity , Amyloid beta-Peptides/metabolism , Angiotensin Receptor Antagonists/toxicity , Brain/drug effects , Neprilysin/antagonists & inhibitors , Protease Inhibitors/toxicity , Tetrazoles/toxicity , Administration, Oral , Aminobutyrates/administration & dosage , Aminobutyrates/pharmacokinetics , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/pharmacokinetics , Animals , Biotransformation , Biphenyl Compounds , Brain/enzymology , Drug Combinations , Female , Humans , Immunohistochemistry , Isotope Labeling , Macaca fascicularis , Neprilysin/metabolism , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacokinetics , Protein Isoforms , Recombinant Proteins/metabolism , Risk Assessment , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Up-Regulation , Valsartan
SELECTION OF CITATIONS
SEARCH DETAIL
...