Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e25139, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356546

ABSTRACT

Enormous amount of protective masks was consumed in connection with the COVID-19 pandemic and they still burden the environment. Therefore, it is necessary to look for possibilities of their disposal in an ecologically acceptable way. This article focuses on particulate matter produced concerning the energy disposal of pandemic FFP2 masks. These masks were processed into small pieces, added to spruce and beech wood (in the weight proportion 5 % and 10 % of FFP2 masks) and formed into pellets. The concentration of particulate matter formed during their combustion was measured by the gravimetric method. The inorganic elements were detected from filters with captured particulate matter by an energy-dispersive X-ray fluorescence spectrometer and verified by inductively coupled plasma-optical emission spectroscopy. It was found that higher concentrations of particulate matter were recorded predominantly with a higher mass airflow. In both airflows (40 % and 50 %), beech pellets had a higher mass concentration than spruce pellets probably caused by the presence of bark in beech wood. Based on the chemical composition, the following elements in small amounts (0-2 mg on a filter) were identified: K, S, Cl and Fe. High concentrations of harmful elements carried in particulate matter have not been detected. FFP2 masks added in a small percentage (up to 10 %) can be used in wood pellets for combustion purposes without significantly affecting the combustion process.

2.
ScientificWorldJournal ; 2014: 138254, 2014.
Article in English | MEDLINE | ID: mdl-24977174

ABSTRACT

Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.


Subject(s)
Computer-Aided Design , Electric Power Supplies , Energy Transfer , Heating/instrumentation , Hot Temperature , Transducers , Equipment Design , Equipment Failure Analysis , Thermal Conductivity
3.
ScientificWorldJournal ; 2014: 487549, 2014.
Article in English | MEDLINE | ID: mdl-24971376

ABSTRACT

The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring , Environmental Monitoring/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...