Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241252

ABSTRACT

Additive technologies have been widely adopted in various industries. The choice of additive technology and material directly affects the functionality of the manufactured components. The development of materials with better mechanical properties has led to a growing interest in replacing traditional metal components with those manufactured using additive technologies. The application of Onyx as a material comes into consideration, which contains short carbon fibers to increase the mechanical properties. This study aims to experimentally verify the viability of substituting metal gripping elements with nylon and composite materials. The design of the jaws was customized to meet the requirements of a three-jaw chuck of a CNC machining center. The evaluation process involved monitoring the functionality and deformation effects on the clamped PTFE polymer material. When the metal jaws were applied, significant deformation of the clamped material occurred, which varied with the clamping pressure. This deformation was evidenced by the formation of spreading cracks on the clamped material and permanent shape changes in the tested material. Conversely, nylon and composite jaws manufactured using additive technology demonstrated functionality across all tested clamping pressures, without causing permanent deformation of the clamped material, unlike the traditional metal jaws. The results of this study confirm the applicability of the Onyx material and provide practical evidence of the potential for reducing deformation caused by clamping mechanisms.

2.
Materials (Basel) ; 15(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35888434

ABSTRACT

In today's engineering industry, technical diagnostics presents many advantages for improving the management of machining centers and automated production lines. As the fourth industrial revolution is currently being implemented, which includes machine diagnostics, the idea of adding information from the field of vibrodiagnostics was born. The vibration of the workpiece or machine tool negatively affects the geometric parameters of the machined surfaces of the workpiece. Through vibrodiagnostics, the influence of cutting parameters on the oscillation of a bearing steel workpiece during centerless grinding is investigated. The presented publication deals with the vibration of the mechanical parts of a centerless grinding machine. The oscillations are recorded by acceleration sensors, which are also placed on the support ruler in which the workpieces are guided, and the recorded data are input parameters for statistical processing of acceleration values in the form of statistical characteristics (minimum, lower quartile, median, upper quartile, maximum). In this paper, this procedure was applied for the selection of the optimum cutting parameters (for the speed of the support wheel), where the machining parameters at which the minimum oscillation values occur were selected based on the above-mentioned statistical characteristics. This optimization procedure revealed increased vibration values which reached the highest amplitude on the ruler, namely accelerations of 11 m/s2, the origin of which was subsequently detected by STFT because the occurrence of resonance events or the excitation of natural frequencies of the machine were suspected. The STFT analysis identified a resonant region at machine start-up determined by the spindle speed which excites the resonance on the machine. The speed range between 1950 and 2150 rpm, which corresponds to the built-up resonance, was provided to the technologists to ensure that the machine was not operated around this resonance region at 400 and 760 Hz until the undesired phenomenon was eliminated. The results of the individual measurements provided information on the ideal setting of the cutting parameters and the current state of the machine.

3.
Materials (Basel) ; 15(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897614

ABSTRACT

Machining with rotating tools appears to be an efficient method that employs a non-standard kinematic turning scheme. It is used in the machining of materials that we classify in the category of difficult to machine. The titanium alloy Ti-6Al-4V, which is widely used in industry and transportation, is an example of such material. Rotary tool machining of titanium alloys has not been the subject of many studies. Additionally, if researchers were dissatisfied with their findings, the reason may not be the kinematic machining scheme itself but rather the tool design and the choice of cutting parameters. When tools are constructed of several components, inaccuracies in production and assembly can arise, resulting in deviations in the cutting part area. A monolithic driven rotary tool eliminates these factors. In the machining process, however, it may react differently from multi-component tools. The presented work focuses on the research of the technology for machining titanium alloy Ti-6Al-4V using a monolithic driven rotary tool. The primary goal is to gather data on the impact of cutting parameters on the machining process. The cutting force and the consequent integrity of the workpiece surface are used to monitor the process. The speed of workpiece rotation has the greatest impact on the process; as it increases, the cutting force increases, as do the values of the surface roughness. In the experiment, lower surface roughness values were attained by increasing the feed parameter and the depth of cut. This may predetermine the inclusion of a kinematic scheme in highly productive technologies.

4.
Materials (Basel) ; 15(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268861

ABSTRACT

Forced rotation turning appears to be an effective machining method due to higher tool life, time efficiency and acceptable quality. Several studies have been carried out to investigate the basic characteristics of forced rotation machining. So far, tools are used whose design included several components. However, such tools may generate vibrations, which are undesirable in the process. In engineering practice, most vibration problems are solved by reducing the cutting parameters (cutting speed and feed rate), which reduces machining productivity. For this reason, a new type of monolithic rotary tool has been designed that eliminates the design complexity and high assembly accuracy requirements of current rotary tools. Based on the performed experimental research, it is possible to define the influence of cutting parameters on the cutting force. Next, the equation of the cutting force and the resulting roughness of the machined surface was determined. In the introduction, the results of the analysis of machining parameters with a rotary tool were added. The presented solution fundamentally validates the new monolithic tool for forced rotation technology and defines its application for different machining materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...