Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
2.
Int J Sport Nutr Exerc Metab ; 34(4): 189-198, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604602

ABSTRACT

Whey protein ingestion during recovery from exercise increases myofibrillar but not muscle connective protein synthesis rates. It has been speculated that whey protein does not provide sufficient glycine to maximize postexercise muscle connective protein synthesis rates. In the present study, we assessed the impact of coingesting different amounts of collagen with whey protein as a nutritional strategy to increase plasma glycine availability during recovery from exercise. In a randomized, double-blind, crossover design, 14 recreationally active men (age: 26 ± 5 years; body mass index: 23.8 ± 2.1 kg·m-2) ingested in total 30 g protein, provided as whey protein with 0 g (WHEY), 5 g (WC05); 10 g (WC10), and 15 g (WC15) of collagen protein immediately after a single bout of resistance exercise. Blood samples were collected frequently over 6 hr of postexercise recovery to assess postprandial plasma amino acid kinetics and availability. Protein ingestion strongly increased plasma amino acid concentrations (p < .001) with no differences in plasma total amino acid availability between treatments (p > .05). The postprandial rise in plasma leucine and essential amino acid availability was greater in WHEY compared with the WC10 and WC15 treatments (p < .05). Plasma glycine and nonessential amino acid concentrations declined following whey protein ingestion but increased following collagen coingestion (p < .05). Postprandial plasma glycine availability averaged -8.9 ± 5.8, 9.2 ± 3.7, 23.1 ± 6.5, and 39.8 ± 11.0 mmol·360 min/L in WHEY, WC05, WC10, and WC15, respectively (incremental area under curve values, p < .05). Coingestion of a small amount of collagen (5 g) with whey protein (25 g) is sufficient to prevent the decline in plasma glycine availability during recovery from lower body resistance-type exercise in recreationally active men.


Subject(s)
Collagen , Cross-Over Studies , Glycine , Whey Proteins , Humans , Whey Proteins/administration & dosage , Male , Adult , Glycine/blood , Glycine/administration & dosage , Double-Blind Method , Young Adult , Postprandial Period , Exercise/physiology , Resistance Training , Sports Nutritional Physiological Phenomena , Amino Acids/blood , Amino Acids/administration & dosage , Muscle, Skeletal/metabolism
3.
Med Sci Sports Exerc ; 56(4): 635-643, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38079310

ABSTRACT

INTRODUCTION: Physical activity level has been identified as an important factor in the development and progression of various types of cancer. In this study, we determined the impact of a low versus high physical activity level on skeletal muscle, healthy prostate, and prostate tumor protein synthesis rates in vivo in prostate cancer patients. METHODS: Thirty prostate cancer patients (age, 66 ± 5 yr; body mass index, 27.4 ± 2.9 kg·m -2 ) were randomized to a low (<4000 steps per day, n = 15) or high (>14,000 steps per day, n = 15) physical activity level for 7 d before their scheduled radical prostatectomy. Daily deuterium oxide administration was combined with the collection of plasma, skeletal muscle, nontumorous prostate, and prostate tumor tissue during the surgical procedure to determine tissue protein synthesis rates throughout the intervention period. RESULTS: Daily step counts averaged 3610 ± 878 and 17,589 ± 4680 steps in patients subjected to the low and high physical activity levels, respectively ( P < 0.001). No differences were observed between tissue protein synthesis rates of skeletal muscle, healthy prostate, or prostate tumor between the low (1.47% ± 0.21%, 2.74% ± 0.70%, and 4.76% ± 1.23% per day, respectively) and high (1.42% ± 0.16%, 2.64% ± 0.58%, and 4.72% ± 0.80% per day, respectively) physical activity group (all P > 0.4). Tissue protein synthesis rates were nearly twofold higher in prostate tumor compared with nontumorous prostate tissue. CONCLUSIONS: A short-term high or low physical activity level does not modulate prostate or prostate tumor protein synthesis rates in vivo in prostate cancer patients. More studies on the impact of physical activity level on tumor protein synthesis rates and tumor progression are warranted to understand the potential impact of lifestyle interventions in the prevention and treatment of cancer.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Middle Aged , Aged , Prostatic Neoplasms/therapy , Prostatectomy/methods , Body Mass Index , Exercise
4.
Med Sci Sports Exerc ; 56(4): 612-622, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37994085

ABSTRACT

PURPOSE: Short periods of limb immobilization lower myofibrillar protein synthesis rates. Within skeletal muscle, the extracellular matrix of connective proteins is recognized as an important factor determining the capacity to transmit contractile force. Little is known regarding the impact of immobilization and subsequent recovery on muscle connective protein synthesis rates. This study examined the impact of 1 wk of leg immobilization and 2 wk of subsequent ambulant recovery on daily muscle connective protein synthesis rates. METHODS: Thirty healthy, young (24 ± 5 yr) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Deuterium oxide ingestion was applied over the entire period, and muscle biopsy samples were collected before immobilization, after immobilization, and after recovery to measure muscle connective protein synthesis rates and mRNA expression of key extracellular matrix proteins (collagen I, collagen III), glycoproteins (fibronectin, tenascin-C), and proteoglycans (fibromodulin, and decorin). A two-way repeated-measures (time-leg) ANOVA was used to compare changes in muscle connective protein synthesis rates during immobilization and recovery. RESULTS: During immobilization, muscle connective protein synthesis rates were lower in the immobilized (1.07 ± 0.30%·d -1 ) compared with the nonimmobilized (1.48 ± 0.44%·d -1 ; P < 0.01) leg. When compared with the immobilization period, connective protein synthesis rates in the immobilized leg increased during subsequent recovery (1.48 ± 0.64%·d -1 ; P < 0.01). After recovery, skeletal muscle collagen I, collagen III, fibronectin, fibromodulin, and decorin mRNA expression increased when compared with the postimmobilization time point (all P < 0.001). CONCLUSIONS: One week of leg immobilization lowers muscle connective protein synthesis rates. Muscle connective protein synthesis rates increase during subsequent ambulant recovery, which is accompanied by increased mRNA expression of key extracellular matrix proteins.


Subject(s)
Fibronectins , Leg , Male , Humans , Young Adult , Fibromodulin/metabolism , Decorin , Muscle, Skeletal/metabolism , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Collagen Type I , RNA, Messenger/metabolism
5.
Cell Rep Med ; 4(12): 101324, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38118410

ABSTRACT

The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.


Subject(s)
Amino Acids , Post-Exercise Recovery , Humans , Muscle, Skeletal/metabolism , Eating/physiology , GTP-Binding Proteins/metabolism
6.
J Nutr ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37972895

ABSTRACT

BACKGROUND: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS: In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS: MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS: Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.

7.
J Nutr ; 153(6): 1718-1729, 2023 06.
Article in English | MEDLINE | ID: mdl-37277162

ABSTRACT

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Subject(s)
Vicia faba , Male , Humans , Animals , Mice , Vicia faba/metabolism , Muscle Proteins/metabolism , Muscular Atrophy/metabolism , Milk Proteins/pharmacology , Milk Proteins/metabolism , Artificial Intelligence , Muscle Strength , Immobilization/methods , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Dietary Supplements , Peptides/metabolism , Muscle, Skeletal/metabolism
8.
J Physiol ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37293995

ABSTRACT

Skeletal muscle disuse reduces muscle protein synthesis rates and induces atrophy, events associated with decreased mitochondrial respiration and increased reactive oxygen species. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation attenuates disuse-induced impairments in mitochondrial function and muscle protein synthesis rates. Female C57Bl/6N mice were subjected to single-limb casting (3 or 7 days) and consumed drinking water with or without 1 mM sodium nitrate. Compared with the contralateral control limb, 3 days of immobilization lowered myofibrillar fractional synthesis rates (FSR, P < 0.0001), resulting in muscle atrophy. Although FSR and mitophagy-related proteins were higher in subsarcolemmal (SS) compared with intermyofibrillar (IMF) mitochondria, immobilization for 3 days decreased FSR in both SS (P = 0.009) and IMF (P = 0.031) mitochondria. Additionally, 3 days of immobilization reduced maximal mitochondrial respiration, decreased mitochondrial protein content, and increased maximal mitochondrial reactive oxygen species emission, without altering mitophagy-related proteins in muscle homogenate or isolated mitochondria (SS and IMF). Although nitrate consumption did not attenuate the decline in muscle mass or myofibrillar FSR, intriguingly, nitrate completely prevented immobilization-induced reductions in SS and IMF mitochondrial FSR. In addition, nitrate prevented alterations in mitochondrial content and bioenergetics after both 3 and 7 days of immobilization. However, in contrast to 3 days of immobilization, nitrate did not prevent the decline in SS and IMF mitochondrial FSR after 7 days of immobilization. Therefore, although nitrate supplementation was not sufficient to prevent muscle atrophy, nitrate may represent a promising therapeutic strategy to maintain mitochondrial bioenergetics and transiently preserve mitochondrial protein synthesis rates during short-term muscle disuse. KEY POINTS: Alterations in mitochondrial bioenergetics (decreased respiration and increased reactive oxygen species) are thought to contribute to muscle atrophy and reduced protein synthesis rates during muscle disuse. Given that dietary nitrate can improve mitochondrial bioenergetics, we examined whether nitrate supplementation could attenuate immobilization-induced skeletal muscle impairments in female mice. Dietary nitrate prevented short-term (3 day) immobilization-induced declines in mitochondrial protein synthesis rates, reductions in markers of mitochondrial content, and alterations in mitochondrial bioenergetics. Despite these benefits and the preservation of mitochondrial content and bioenergetics during more prolonged (7 day) immobilization, nitrate consumption did not preserve skeletal muscle mass or myofibrillar protein synthesis rates. Overall, although dietary nitrate did not prevent atrophy, nitrate supplementation represents a promising nutritional approach to preserve mitochondrial function during muscle disuse.

9.
Med Sci Sports Exerc ; 55(10): 1792-1802, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37202878

ABSTRACT

INTRODUCTION: Protein ingestion during recovery from exercise has been reported to augment myofibrillar protein synthesis rates, without increasing muscle connective protein synthesis rates. It has been suggested that collagen protein may be effective in stimulating muscle connective protein synthesis. The present study assessed the capacity of both whey and collagen protein ingestion to stimulate postexercise myofibrillar and muscle connective protein synthesis rates. METHODS: In a randomized, double-blind, parallel design, 45 young male ( n = 30) and female ( n = 15) recreational athletes (age, 25 ± 4 yr; body mass index, 24.1 ± 2.0 kg·m -2 ) were selected to receive primed continuous intravenous infusions with l -[ring- 13 C 6 ]-phenylalanine and l -[3,5- 2 H 2 ]-tyrosine. After a single session of resistance type exercise, subjects were randomly allocated to one of three groups ingesting either 30 g whey protein (WHEY, n = 15), 30 g collagen protein (COLL, n = 15) or a noncaloric placebo (PLA, n = 15). Blood and muscle biopsy samples were collected over a subsequent 5-h recovery period to assess both myofibrillar and muscle connective protein synthesis rates. RESULTS: Protein ingestion increased circulating plasma amino acid concentrations ( P < 0.05). The postprandial rise in plasma leucine and essential amino acid concentrations was greater in WHEY compared with COLL, whereas plasma glycine and proline concentrations increased more in COLL compared with WHEY ( P < 0.05). Myofibrillar protein synthesis rates averaged 0.041 ± 0.010, 0.036 ± 0.010, and 0.032 ± 0.007%·h -1 in WHEY, COLL and PLA, respectively, with only WHEY resulting in higher rates when compared with PLA ( P < 0.05). Muscle connective protein synthesis rates averaged 0.072 ± 0.019, 0.068 ± 0.017, and 0.058 ± 0.018%·h -1 in WHEY, COLL, and PLA, respectively, with no significant differences between groups ( P = 0.09). CONCLUSIONS: Ingestion of whey protein during recovery from exercise increases myofibrillar protein synthesis rates. Neither collagen nor whey protein ingestion further increased muscle connective protein synthesis rates during the early stages of postexercise recovery in both male and female recreational athletes.


Subject(s)
Collagen , Muscle Proteins , Humans , Male , Female , Young Adult , Adult , Muscle Proteins/metabolism , Whey Proteins , Collagen/metabolism , Muscle, Skeletal/metabolism , Eating , Polyesters/pharmacology , Postprandial Period , Dietary Proteins
10.
Exp Gerontol ; 173: 112083, 2023 03.
Article in English | MEDLINE | ID: mdl-36621699

ABSTRACT

BACKGROUND: Ageing of skeletal muscle is characterized in some by muscle fiber type grouping due to denervation-reinnervation cycles, but the severity of fiber type grouping varies widely across individuals of the same chronological age. It remains unknown whether fiber type grouping is associated with lower muscle mass and/or reduced physical function in elderly. Therefore, we assessed the relationship between fiber type grouping and indices of muscle mass and physical function in older adults. In addition, we assessed whether fiber type grouping is affected by prolonged resistance training in older adults. METHODS: Twenty young (21 ± 2 y) and twenty older (70 ± 4 y) healthy men participated in the present study. Body composition (DXA-scan), quadriceps cross-sectional area (CT-scan) and muscle strength (1RM) were assessed at baseline (young and old) and following 12 weeks of resistance training (old only). Percutaneous skeletal muscle biopsies from the vastus lateralis were collected at baseline (young and old) and following exercise training (old only). Immunohistochemical analyses were performed to evaluate type I and type II muscle fiber distribution, size, myonuclear content and grouping. RESULTS: At baseline, type II fibers were significantly (P < 0.05) smaller in older compared with young adults (5366 ± 1288 vs 6705 ± 1168 µm2). Whereas no differences were observed in type I, type II fiber grouping was significantly (P < 0.05) lower in older (18 ± 18 %) compared with young (32 ± 25 %) men. No significant correlations were observed between fiber type grouping and muscle mass or physical function. Prolonged resistance training in old men resulted in a significant increase (P < 0.05) in type II fiber size (from 5366 ± 1288 to 6165 ± 1484 µm2) with no significant changes in the proportion of type I muscle fibers found grouped. CONCLUSION: Muscle fiber type grouping is not associated with lower body strength or muscle mass in healthy, older men. In addition, twelve weeks of resistance exercise training results in type II muscle fiber specific hypertrophy but does not affect fiber type grouping.


Subject(s)
Resistance Training , Male , Humans , Aged , Female , Resistance Training/methods , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Muscle Fibers, Fast-Twitch/pathology , Exercise
11.
Nutr Rev ; 80(6): 1497-1514, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34605901

ABSTRACT

Collagen is the central structural component of extracellular connective tissue, which provides elastic qualities to tissues. For skeletal muscle, extracellular connective tissue transmits contractile force to the tendons and bones. Connective tissue proteins are in a constant state of remodeling and have been shown to express a high level of plasticity. Dietary-protein ingestion increases muscle protein synthesis rates. High-quality, rapidly digestible proteins are generally considered the preferred protein source to maximally stimulate myofibrillar (contractile) protein synthesis rates. In contrast, recent evidence demonstrates that protein ingestion does not increase muscle connective tissue protein synthesis. The absence of an increase in muscle connective tissue protein synthesis after protein ingestion may be explained by insufficient provision of glycine and/or proline. Dietary collagen contains large amounts of glycine and proline and, therefore, has been proposed to provide the precursors required to facilitate connective tissue protein synthesis. This literature review provides a comprehensive evaluation of the current knowledge on the proposed benefits of dietary collagen consumption to stimulate connective tissue remodeling to improve health and functional performance.


Subject(s)
Collagen , Connective Tissue , Collagen/metabolism , Connective Tissue/metabolism , Eating , Glycine/metabolism , Humans , Muscle, Skeletal/metabolism , Proline/metabolism
12.
Int J Sport Nutr Exerc Metab ; 31(3): 217-226, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33588378

ABSTRACT

Protein ingestion and exercise stimulate myofibrillar protein synthesis rates. When combined, exercise further increases the postprandial rise in myofibrillar protein synthesis rates. It remains unclear whether protein ingestion with or without exercise also stimulates muscle connective tissue protein synthesis rates. The authors assessed the impact of presleep protein ingestion on overnight muscle connective tissue protein synthesis rates at rest and during recovery from resistance-type exercise in older men. Thirty-six healthy, older men were randomly assigned to ingest 40 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine-labeled casein protein (PRO, n = 12) or a nonprotein placebo (PLA, n = 12) before going to sleep. A third group performed a single bout of resistance-type exercise in the evening before ingesting 40 g intrinsically-labeled casein protein prior to sleep (EX+PRO, n = 12). Continuous intravenous infusions of L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine were applied with blood and muscle tissue samples collected throughout overnight sleep. Presleep protein ingestion did not increase muscle connective tissue protein synthesis rates (0.049 ± 0.013 vs. 0.060 ± 0.024%/hr in PLA and PRO, respectively; p = .73). Exercise plus protein ingestion resulted in greater overnight muscle connective tissue protein synthesis rates (0.095 ± 0.022%/hr) when compared with PLA and PRO (p < .01). Exercise increased the incorporation of dietary protein-derived amino acids into muscle connective tissue protein (0.036 ± 0.013 vs. 0.054 ± 0.009 mole percent excess in PRO vs. EX+PRO, respectively; p < .01). In conclusion, resistance-type exercise plus presleep protein ingestion increases overnight muscle connective tissue protein synthesis rates in older men. Exercise enhances the utilization of dietary protein-derived amino acids as precursors for de novo muscle connective tissue protein synthesis during overnight sleep.


Subject(s)
Connective Tissue/metabolism , Dietary Proteins/administration & dosage , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Resistance Training , Sleep/physiology , Aged , Blood Glucose/analysis , Blood Proteins/analysis , Caseins/administration & dosage , Caseins/blood , Caseins/metabolism , Dietary Proteins/metabolism , Double-Blind Method , Elder Nutritional Physiological Phenomena , Humans , Insulin/blood , Leucine/administration & dosage , Leucine/blood , Leucine/metabolism , Male , Myofibrils/metabolism , Phenylalanine/administration & dosage , Phenylalanine/blood , Phenylalanine/metabolism , Postprandial Period/physiology
13.
Int J Sport Nutr Exerc Metab ; 31(3): 209-216, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33601335

ABSTRACT

The impact of resistance exercise frequency on muscle protein synthesis rates remains unknown. The aim of this study was to compare daily myofibrillar protein synthesis rates over a 7-day period of low-frequency (LF) versus high-frequency (HF) resistance exercise training. Nine young men (21 ± 2 years) completed a 7-day period of habitual physical activity (BASAL). This was followed by a 7-day exercise period of volume-matched, LF (10 × 10 repetitions at 70% one-repetition maximum, once per week) or HF (2 × 10 repetitions at ∼70% one-repetition maximum, five times per week) resistance exercise training. The participants had one leg randomly allocated to LF and the other to HF. Skeletal muscle biopsies and daily saliva samples were collected to determine myofibrillar protein synthesis rates using 2H2O, with intracellular signaling determined using Western blotting. The myofibrillar protein synthesis rates did not differ between the LF (1.46 ± 0.26%/day) and HF (1.48 ± 0.33%/day) conditions over the 7-day exercise training period (p > .05). There were no significant differences between the LF and HF conditions over the first 2 days (1.45 ± 0.41%/day vs. 1.25 ± 0.46%/day) or last 5 days (1.47 ± 0.30%/day vs. 1.50 ± 0.41%/day) of the exercise training period (p > .05). Daily myofibrillar protein synthesis rates were not different from BASAL at any time point during LF or HF (p > .05). The phosphorylation status and total protein content of selected proteins implicated in skeletal muscle ribosomal biogenesis were not different between conditions (p > .05). Under the conditions of the present study, resistance exercise training frequency did not modulate daily myofibrillar protein synthesis rates in young men.


Subject(s)
Muscle Proteins/biosynthesis , Myofibrils/metabolism , Resistance Training , Actigraphy/statistics & numerical data , Biopsy , Deuterium Oxide/metabolism , Diet , Energy Intake , Humans , Leg , Male , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Phosphorylation , Random Allocation , Ribosomal Proteins/biosynthesis , Signal Transduction , Time Factors , Young Adult
14.
Proc Nutr Soc ; 80(2): 221-229, 2021 05.
Article in English | MEDLINE | ID: mdl-33487181

ABSTRACT

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


Subject(s)
Dietary Proteins/metabolism , Postprandial Period , Amino Acids , Humans , Muscle Proteins , Muscle, Skeletal
15.
Am J Clin Nutr ; 113(3): 548-561, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32469388

ABSTRACT

BACKGROUND: Short-term (<1 wk) muscle disuse lowers daily myofibrillar protein synthesis (MyoPS) rates resulting in muscle mass loss. The understanding of how daily dietary protein intake influences such muscle deconditioning requires further investigation. OBJECTIVES: To assess the influence of graded dietary protein intakes on daily MyoPS rates and the loss of muscle mass during 3 d of disuse. METHODS: Thirty-three healthy young men (aged 22 ± 1 y; BMI = 23 ± 1 kg/m2) initially consumed the same standardized diet for 5 d, providing 1.6 g protein/kg body mass/d. Thereafter, participants underwent a 3-d period of unilateral leg immobilization during which they were randomly assigned to 1 of 3 eucaloric diets containing relatively high, low, or no protein (HIGH: 1.6, LOW: 0.5, NO: 0.15 g protein/kg/d; n = 11 per group). One day prior to immobilization participants ingested 400 mL deuterated water (D2O) with 50-mL doses consumed daily thereafter. Prior to and immediately after immobilization upper leg bilateral MRI scans and vastus lateralis muscle biopsies were performed to measure quadriceps muscle volume and daily MyoPS rates, respectively. RESULTS: Quadriceps muscle volume of the control legs remained unchanged throughout the experiment (P > 0.05). Immobilization led to 2.3 ± 0.4%, 2.7 ± 0.2%, and 2.0 ± 0.4% decreases in quadriceps muscle volume (P < 0.05) of the immobilized leg in the HIGH, LOW, and NO groups (P < 0.05), respectively, with no significant differences between groups (P > 0.05). D2O ingestion resulted in comparable plasma free [2H]-alanine enrichments during immobilization (∼2.5 mole percentage excess) across groups (P > 0.05). Daily MyoPS rates during immobilization were 30 ± 2% (HIGH), 26 ± 3% (LOW), and 27 ± 2% (NO) lower in the immobilized compared with the control leg, with no significant differences between groups (P > 0.05). CONCLUSIONS: Three days of muscle disuse induces considerable declines in muscle mass and daily MyoPS rates. However, daily protein intake does not modulate any of these muscle deconditioning responses.Clinical trial registry number: NCT03797781.


Subject(s)
Dietary Proteins/administration & dosage , Immobilization/adverse effects , Muscle Proteins/biosynthesis , Muscular Atrophy/etiology , Quadriceps Muscle/metabolism , Humans , Male , Muscle Strength , Protein Biosynthesis , Young Adult
16.
Eur J Appl Physiol ; 120(9): 2083-2094, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32651634

ABSTRACT

PURPOSE: To compare endocrine responses to intermittent vs continuous enteral nutrition provision during short-term bed rest. METHODS: Twenty healthy men underwent 7 days of bed rest, during which they were randomized to receive enteral nutrition (47%E as carbohydrate, 34%E as fat, 16%E as protein and 3%E as fibre) in a continuous (CONTINUOUS; n = 10; 24 h day-1 at a constant rate) or intermittent (INTERMITTENT; n = 10; as 4 meals per day separated by 5 h) pattern. Daily plasma samples were taken every morning to assess metabolite/hormone concentrations. RESULTS: During bed rest, plasma leptin concentrations were elevated to a lesser extent with INTERMITTENT vs CONTINUOUS (iAUC: 0.42 ± 0.38 vs 0.95 ± 0.48 nmol L-1, respectively; P = 0.014) as were insulin concentrations (interaction effect, P < 0.001) which reached a peak of 369 ± 225 pmol L-1 in CONTINUOUS, compared to 94 ± 38 pmol L-1 in INTERMITTENT (P = 0.001). Changes in glucose infusion rate were positively correlated with changes in fasting plasma GLP-1 concentrations (r = 0.44, P = 0.049). CONCLUSION: Intermittent enteral nutrition attenuates the progressive rise in plasma leptin and insulinemia seen with continuous feeding during bed rest, suggesting that continuous feeding increases insulin requirements to maintain euglycemia. This raises the possibility that hepatic insulin sensitivity is impaired to a greater extent with continuous versus intermittent feeding during bed rest. To attenuate endocrine and metabolic changes with enteral feeding, an intermittent feeding strategy may, therefore, be preferable to continuous provision of nutrition. This trial was registered on clinicaltrials.gov as NCT02521025.


Subject(s)
Insulin/blood , Leptin/blood , Rest/physiology , Adult , Bed Rest/methods , Blood Glucose/metabolism , Enteral Nutrition/methods , Female , Glucagon-Like Peptide 1/blood , Glucose/metabolism , Humans , Insulin Resistance/physiology , Male
17.
Med Sci Sports Exerc ; 52(9): 1983-1991, 2020 09.
Article in English | MEDLINE | ID: mdl-32195768

ABSTRACT

PURPOSE: This study aimed to assess the effect of dietary protein ingestion on intramuscular connective tissue protein synthesis rates during overnight recovery from a single bout of resistance exercise. METHODS: Thirty-six healthy, young males were randomly assigned to one of three treatments. One group ingested 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (PRO, n = 12). The other two groups performed a bout of resistance exercise in the evening and ingested either placebo (EX, n = 12) or 30 g intrinsically L-[1-C]-phenylalanine-labeled casein protein before sleep (EX + PRO, n = 12). Continuous intravenous infusions of L-[ring-H5]-phenylalanine and L-[1-C]-leucine were applied, and blood and muscle tissue samples were collected to assess connective tissue protein synthesis rates and dietary protein-derived amino acid incorporation in the connective tissue protein fraction. RESULTS: Resistance exercise resulted in higher connective tissue protein synthesis rates when compared with rest (0.086 ± 0.017%·h [EX] and 0.080 ± 0.019%·h [EX + PRO] vs 0.059 ± 0.016%·h [PRO]; P < 0.05). Postexercise casein protein ingestion did not result in higher connective tissue protein synthesis rates when compared with postexercise placebo ingestion (P = 1.00). Dietary protein-derived amino acids were incorporated into the connective tissue protein fraction at rest, and to a greater extent during recovery from exercise (P = 0.002). CONCLUSION: Resistance exercise increases intramuscular connective tissue protein synthesis rates during overnight sleep, with no further effect of postexercise protein ingestion. However, dietary protein-derived amino acids are being used as precursors to support de novo connective tissue protein synthesis.


Subject(s)
Caseins/administration & dosage , Connective Tissue/metabolism , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Resistance Training , Adult , Area Under Curve , Blood Glucose/metabolism , Glycine/blood , Humans , Insulin/blood , Male , Proline/blood , Young Adult
18.
J Nutr ; 150(8): 2041-2050, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32069356

ABSTRACT

BACKGROUND: Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE: We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS: We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS: A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS: Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.


Subject(s)
Aging , Dietary Proteins/administration & dosage , Dietary Proteins/analysis , Digestion/physiology , Phenylalanine/pharmacokinetics , Adult , Aged , Biological Transport , Female , Humans , Hyperglycemia , Male , Middle Aged , Phenylalanine/blood
19.
Int J Sport Nutr Exerc Metab ; 30(2): 153­164, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32035417

ABSTRACT

Physical activity increases muscle protein synthesis rates. However, the impact of exercise on the coordinated up- and/or downregulation of individual protein synthesis rates in skeletal muscle tissue remains unclear. The authors assessed the impact of exercise on mixed muscle, myofibrillar, and mitochondrial protein synthesis rates as well as individual protein synthesis rates in vivo in rats. Adult Lewis rats either remained sedentary (n = 3) or had access to a running wheel (n = 3) for the last 2 weeks of a 3-week experimental period. Deuterated water was injected and subsequently administered in drinking water over the experimental period. Blood and soleus muscle were collected and used to assess bulk mixed muscle, myofibrillar, and mitochondrial protein synthesis rates using gas chromatography-mass spectrometry and individual muscle protein synthesis rates using liquid chromatography-mass spectrometry (i.e., dynamic proteomic profiling). Wheel running resulted in greater myofibrillar (3.94 ± 0.26 vs. 3.03 ± 0.15%/day; p < .01) and mitochondrial (4.64 ± 0.24 vs. 3.97 ± 0.26%/day; p < .05), but not mixed muscle (2.64 ± 0.96 vs. 2.38 ± 0.62%/day; p = .71) protein synthesis rates, when compared with the sedentary condition. Exercise impacted the synthesis rates of 80 proteins, with the difference from the sedentary condition ranging between -64% and +420%. Significantly greater synthesis rates were detected for F1-ATP synthase, ATP synthase subunit alpha, hemoglobin, myosin light chain-6, and synaptopodin-2 (p < .05). The skeletal muscle protein adaptive response to endurance-type exercise involves upregulation of mitochondrial protein synthesis rates, but it is highly coordinated as reflected by the up- and downregulation of various individual proteins across different bulk subcellular protein fractions.

20.
Am J Physiol Endocrinol Metab ; 318(2): E117-E130, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31743039

ABSTRACT

Short-term muscle disuse has been reported to lower both postabsorptive and postprandial myofibrillar protein synthesis rates. This study assessed the impact of disuse on daily myofibrillar protein synthesis rates following short-term (2 and 7 days) muscle disuse under free living conditions. Thirteen healthy young men (age: 20 ± 1 yr; BMI: 23 ± 1 kg/m-2) underwent 7 days of unilateral leg immobilization via a knee brace, with the nonimmobilized leg acting as a control. Four days before immobilization participants ingested 400 mL of 70% deuterated water, with 50-mL doses consumed daily thereafter. Upper leg bilateral MRI scans and muscle biopsies were collected before and after 2 and 7 days of immobilization to determine quadriceps volume and daily myofibrillar protein synthesis rates. Immobilization reduced quadriceps volume in the immobilized leg by 1.7 ± 0.3 and 6.7 ± 0.6% after 2 and 7 days, respectively, with no changes in the control leg. Over the 1-wk immobilization period, myofibrillar protein synthesis rates were 36 ± 4% lower in the immobilized (0.81 ± 0.04%/day) compared with the control (1.26 ± 0.04%/day) leg (P < 0.001). Myofibrillar protein synthesis rates in the control leg did not change over time (P = 0.775), but in the immobilized leg they were numerically lower during the 0- to 2-day period (16 ± 6%, 1.11 ± 0.09%/day, P = 0.153) and were significantly lower during the 2- to 7-day period (44 ± 5%, 0.70 ± 0.06%/day, P < 0.001) when compared with the control leg. We conclude that 1 wk of muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates in healthy young men.


Subject(s)
Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myofibrils/metabolism , Body Water/metabolism , Diet , Exercise , Gene Expression , Healthy Volunteers , Humans , Immobilization , Kinetics , Leg , Magnetic Resonance Imaging , Male , Muscle Proteins/genetics , Muscle Strength , Muscle, Skeletal/diagnostic imaging , Muscular Atrophy/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...