Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049092

ABSTRACT

Rigid polyurethane (PUR) foams have outstanding properties, and some of them are successfully used even today as cryogenic insulation. The fourth-generation blowing agent Solstice® LBA and commercial polyols were used for the production of a low-density cryogenic PUR foam composition. A lab-scale pouring method for PUR foam preparation and up-scaling of the processes using an industrial spraying machine are described in this article. For the determination of the foam properties at cryogenic temperature, original methods, devices, and appliances were used. The properties at room and cryogenic temperatures of the developed PUR foams using a low-toxicity, bismuth-based, and low-emission amine catalyst were compared with a reference foam with a conventional tin-based additive amine catalyst. It was found that the values of important cryogenic characteristics such as adhesion strength after cryoshock and the safety coefficient of the PUR foams formed with new reactive-type amine-based catalysts and with the blowing agent Solstice® LBA were higher than those of the foam with conventional catalysts.

2.
Biofilm ; 5: 100109, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36909662

ABSTRACT

Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.

3.
Acta Crystallogr C Struct Chem ; 78(Pt 7): 405-413, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35788505

ABSTRACT

A new mixed-valence CuI/CuII three-dimensional coordination polymer, poly[[diaquabis[µ4-2-(pyrazin-2-yl)quinoline-4-carboxylato]dicopper(I)copper(II)] bis(tetrafluoridoborate)], {[Cu3(C14H8N3O2)2(H2O)2](BF4)2}n, was synthesized and characterized, with 2-(pyrazin-2-yl)quinoline-4-carboxylic acid being employed as a linker ligand. The ligand was isolated as its hydrochloride salt, 4-carboxy-2-(pyrazin-2-yl)quinolin-1-ium chloride dihydrate, C14H10N3O2+·Cl-·2H2O. The compounds show luminescence at 550 nm for the ligand and at 565 nm for the polymer at 297 K. The ligand structure was rationalized by means of quantum-chemical calculations, which led to a similar conformation to that determined from X-ray diffraction studies.

4.
Inorg Chem ; 59(15): 10768-10784, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32687708

ABSTRACT

A series of model dinuclear manganese(IV) complexes of the general formula [(H3COH)(L')MnIV(µ-L)2MnIV(L')(HOCH3)] is presented. These compounds feature capping 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands derived from a polydentate oxime compound (L'). The bridging ligands L include azide (1), methoxide (2), and oxalate (3) anions. The magnetic properties and high-field (HF) EPR spectra of 1-3 were studied in detail and revealed varying weak antiferromagnetic coupling and modest zero-field splitting (ZFS) of the local quartet spin sites. Our HF EPR studies provide insight into the dimer ZFS, including determination of the corresponding parameters by giant spin approach for methoxido-bridged complex 2. Furthermore, the physicochemical properties of 1-3 were studied using IR, UV-vis, and electrochemical (cyclic voltammetry) methods. Theoretical exchange coupling constants were obtained using broken-symmetry (BS) density functional theory (DFT). Computational estimates of the local quartet ground spins state ZFSs of 1-3 were obtained using coupled-perturbed (CP) DFT and complete active space self-consistent field (CASSCF) calculations with n-electron valence state perturbation theory (NEVPT2) corrections. We found that the CP DFT calculations which used the B3LYP functional and models derived experimental structures performed best in reproducing both the magnitude and the sign of the experimental D values. Moreover, our computational investigation of 1-3 suggests that we observe metals sites which have an increased +3 character and are supported by redox noninnocent 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands. The latter conclusion is further corroborated by the observation that the free ligand can be readily oxidized to yield a NO-based radical.

5.
Acta Crystallogr C Struct Chem ; 76(Pt 5): 500-506, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32367832

ABSTRACT

Employment of the organic 2-(pyridin-4-yl)quinoline-4-carboxylic acid ligand with extended coordination capabilities leads to the formation of the one-dimensional copper(II) coordination polymer catena-poly[[diaquacopper(II)]-bis[µ-2-(pyridin-4-yl)quinoline-4-carboxylato]-κ2N2:O;κ2O:N], {[Cu(C15H9N2O2)2(H2O)2]·2H2O}n, under hydrothermal conditions. The ligand, isolated as its hydrochloride salt, namely, 4-(4-carboxyquinolin-2-yl)pyridinium chloride monohydrate, C15H11N2O2+·Cl-·H2O, reveals a pseudosymmetry element (translation a/2) in its crystal structure. The additional pyridyl N atom, in comparison with the previously reported analogues with an arene ring instead of the pyridyl ring in the present ligand molecule, promotes the formation of a one-dimensional coordination polymer, rather than discrete molecules. This polymer shows photoluminescent properties with bathochromic/hypsochromic shifts of the ligand absorption bands, leading to a single band at 479 nm. The CuII ions are involved in weak antiferromagnetic interactions within dimeric units, as evidenced by SQUID magnetometry.

6.
Int J Mol Sci ; 21(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952278

ABSTRACT

Even 155 years after their first synthesis, Schiff bases continue to surprise inorganic chemists. Schiff-base ligands have played a major role in the development of modern coordination chemistry because of their relevance to a number of interdisciplinary research fields. The chemistry, properties and applications of transition metal and lanthanoid complexes with Schiff-base ligands are now quite mature. On the contrary, the coordination chemistry of Schiff bases with actinoid (5f-metal) ions is an emerging area, and impressive research discoveries have appeared in the last 10 years or so. The chemistry of actinoid ions continues to attract the intense interest of many inorganic groups around the world. Important scientific challenges are the understanding the basic chemistry associated with handling and recycling of nuclear materials; investigating the redox properties of these elements and the formation of complexes with unusual metal oxidation states; discovering materials for the recovery of trans-{UVIO2}2+ from the oceans; elucidating and manipulating actinoid-element multiple bonds; discovering methods to carry out multi-electron reactions; and improving the 5f-metal ions' potential for activation of small molecules. The study of 5f-metal complexes with Schiff-base ligands is a currently "hot" topic for a variety of reasons, including issues of synthetic inorganic chemistry, metalosupramolecular chemistry, homogeneous catalysis, separation strategies for nuclear fuel processing and nuclear waste management, bioinorganic and environmental chemistry, materials chemistry and theoretical chemistry. This almost-comprehensive review, covers aspects of synthetic chemistry, reactivity and the properties of dinuclear and oligonuclear actinoid complexes based on Schiff-base ligands. Our work focuses on the significant advances that have occurred since 2000, with special attention on recent developments. The review is divided into eight sections (chapters). After an introductory section describing the organization of the scientific information, Sections 2 and 3 deal with general information about Schiff bases and their coordination chemistry, and the chemistry of actinoids, respectively. Section 4 highlights the relevance of Schiff bases to actinoid chemistry. Sections 5-7 are the "main menu" of the scientific meal of this review. The discussion is arranged according the actinoid (only for Np, Th and U are Schiff-base complexes known). Sections 5 and 7 are further arranged into parts according to the oxidation states of Np and U, respectively, because the coordination chemistry of these metals is very much dependent on their oxidation state. In Section 8, some concluding comments are presented and a brief prognosis for the future is attempted.


Subject(s)
Actinoid Series Elements/chemistry , Coordination Complexes/chemistry , Models, Chemical , Schiff Bases/chemistry , Catalysis , Chemistry Techniques, Synthetic/methods , Chemistry Techniques, Synthetic/trends , Coordination Complexes/chemical synthesis , Ligands , Molecular Structure , Oxidation-Reduction , Schiff Bases/chemical synthesis
7.
Dalton Trans ; 47(46): 16668-16673, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30426131

ABSTRACT

Herein the role of a mononuclear cobalt(iii) complex, [CoIII(DPKOH)2]ClO4 (DPK = di(2-pyridyl)ketone), in the water electrooxidation process is investigated with scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction studies, NMR, chronoamperometry, cyclic voltammetry, extended X-ray absorption fine structure and X-ray absorption near edge structure determination. Our experiments show that, in comparison to the reported literature, other cobalt-containing structures on the surface of the FTO electrode could also be the true catalyst for water oxidation.

8.
Dalton Trans ; 47(35): 12474, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30112550

ABSTRACT

Correction for 'Water oxidation by a copper(ii) complex: new findings, questions, challenges and a new hypothesis' by Mohammad Mahdi Najafpour et al., Dalton Trans., 2018, 47, 9021-9029.

9.
Dalton Trans ; 47(27): 9021-9029, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29927452

ABSTRACT

Copper(ii) complexes are very promising catalysts for water oxidation. Herein new findings on the water-oxidizing activity of a few copper(ii) complexes under water oxidation conditions are reported. Copper compounds in this study are copper(ii) phthalocyanine-3,4',4'',4'''-tetrasulfonic acid tetrasodium salt (1), the product from the hydrolysis of Cu(ii)tptz(H2O)(CH3COO)2 (tptz: 2,4,6-tris(2-pyridyl)-s-triazine) (2), Cu(ii)(phen)(CH3CN)2(ClO4)2 (3), Cu(ii)(phen)2(CH3CN)(ClO4)2 (4), and copper(ii) sulfate pentahydrate (Cu(ii) salt), which were investigated in the context of the water oxidation reaction by electrochemical and related methods. The experiments showed that among these compounds at pH = 11, only Cu(ii) salt and 3 led to immediate water oxidation. On the other hand, for stable complexes 1, 2 and 4 even after a few minutes low water oxidation rates were observed. The role of nanosized particles of Cu oxide or Cu ions in electrochemical water oxidation was investigated. Under the water oxidation conditions, the electrode, Cu(ii) complexes and Cu(ii) salt were studied and a relationship between the stability of the Cu(ii) complex and water oxidation rate was suggested. It is proposed that Cu(ii) ions or clusters, rather than the starting copper(ii) complex or copper(ii) oxide, are the true catalysts for the investigated water oxidation process in short-term amperometry. For 3 and in long-term amperometry, CuOx was detected. The experiments showed that a molecular mechanism for the water oxidation reaction in the presence of copper(ii) complexes should be carefully analyzed to verify the role of copper ions or cluster formation in the water oxidation reaction.

10.
Dalton Trans ; 47(5): 1557-1565, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29322150

ABSTRACT

For the first time, using scanning electron microscopy, transmission electron microscopy, X-ray absorption near edge structure and extended X-ray absorption fine structure X-ray diffraction, it is showed that MnCO3, MnWO4, Mn3(PO4)2·3H2O, MnS and Mn(VO3)2·xH2O under the water-oxidation conditions and in the presence of cerium(iv) ammonium nitrate, are converted to Mn oxide without a high-range order. A mechanism is proposed for such conversion and as Mn oxide is an efficient water-oxidizing catalyst, it is thus a candidate as a contributor to the observed catalytic activity.

11.
Biochim Biophys Acta Bioenerg ; 1858(2): 156-174, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27838231

ABSTRACT

Plants, algae and cyanobacteria capture sunlight, extracting electrons from H2O to reduce CO2 into sugars while releasing O2 in the oxygenic photosynthetic process. Because of the important role of water oxidation in artificial photosynthesis and many solar fuel systems, understanding the structure and function of this unique biological catalyst forms a requisite research field. Herein the structure of the water-oxidizing complex and its ligand environment are described with reference to the 1.9Å resolution X-ray-derived crystallographic model of the water-oxidizing complex from the cyanobacterium Thermosynechococcus vulcanus. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides are also reviewed and discussed in the paper.


Subject(s)
Manganese Compounds/metabolism , Oxides/metabolism , Photosystem II Protein Complex/metabolism , Water/metabolism , Cyanobacteria/metabolism , Oxidation-Reduction , Photosynthesis/physiology , Plants/metabolism
12.
Chem Commun (Camb) ; 52(50): 7826-9, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27242066

ABSTRACT

Three highly porous Zr(iv)-based metal-organic frameworks, UBMOF-8, UBMOF-9, and UBMOF-31, were synthesized by using 2,2'-diamino-4,4'-stilbenedicarboxylic acid, 4,4'-stilbenedicarboxylic acid, and combination of both linkers, respectively. The mixed-linker UBMOF-31 showed excellent hydrogen uptake of 4.9 wt% and high selectivity for adsorption of CO2 over N2 with high thermal stability and moderate water stability with permanent porosity and surface area of 2552 m(2) g(-1).

13.
Dalton Trans ; 45(22): 9307-19, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27184620

ABSTRACT

Currently, the leading approach for extraction of uranium from seawater is selective sorption of UO2(2+) ions onto a poly(acrylamidoxime) fiber. Amidoxime functional groups are the most studied extractant moieties for this application, but are not perfectly selective, and understanding how these groups (and more generally the oxime groups) interact with UO2(2+) and competing ions in seawater is an important step in designing better extractants. We have started a new research programme aiming at in-depth studies of the uranyl-oxime/amidoxime interactions and we report here our first results which cover aspects of the coordination chemistry of 2-pyridyl ketoximes towards UO2(2+). Detailed synthetic investigations of various UO2(2+)/mepaoH and UO2(2+)/phpaoH reaction systems (mepaoH is methyl 2-pyridyl ketoxime and phpaoH is phenyl 2-pyridyl ketoxime) have provided access to the complexes [UO2(mepao)2(MeOH)2]{[UO2(NO3)(mepao)(MeOH)2]}2 (), [UO2(mepao)2(MeOH)2] (), [(UO2)2(O2)(O2CMe)2(mepaoH)2] () and [UO2(phpao)2(MeOH)2] (). The peroxido group in , which was isolated without the addition of external peroxide sources, probably arises from a bis(aquo)- and/or bis(hydroxido)-bridged diuranyl precursor in solution followed by photochemical oxidation of the bridging groups. The U(VI) atom in the [UO2(NO3)(mepao)(MeOH)2] molecules of () is surrounded by one nitrogen and seven oxygen atoms in a very distorted hexagonal bipyramidal geometry; two oxygen atoms from the terminal MeOH ligands, two oxygen atoms from the bidentate chelating nitrato group, and the oxygen and nitrogen atoms from the η(2) oximate group of the 1.110 (Harris notation) mepao(-) ligand define the equatorial plane. This plane consists of two terminal MeOH ligands and two η(2) oximate groups in the [UO2(mepao)2(MeOH)2] molecule () of . The structure of the [UO2(mepao)2(MeOH)2] molecule that is present in is very similar to the structure of the corresponding molecule in . The structure of the dinuclear molecule that is present in consists of two {UO2(O2CMe)(mepaoH)}(+) units bridged by a η(2):η(2):µ O2(2-) group. The equatorial plane of each uranyl site is composed of the pyridyl and oxime nitrogen atoms of a 1.011 mepaoH ligand, the oxygen atoms of an almost symmetrically coordinated bidentate chelating MeCO2(-) group and the two oxygen atoms of the peroxido groups. The core molecular structure of is similar to that of , the only difference being the presence of 1.110 phpao(-) ligands in the former instead of mepao(-) groups in the latter. The free pyridyl nitrogen atoms of mepao(-) and phpao(-) ligands of , and are acceptors of intramolecular H bonds from the ligated MeOH oxygen atoms. H-bonding and π-π stacking interactions build interesting supramolecular networks in the crystal structures of the four complexes. Compounds are the first structurally characterized uranyl complexes with 2-pyridyl aldoximes or ketoximes as ligands. IR data are discussed in terms of the coordination modes of the ligands in the complexes. (1)H NMR data in DMSO-d6 suggest that the complexes decompose in solution. The ESI(-) MS spectrum of dissolved in the NH4(O2CMe) buffer is indicative of the presence of [UO2(O2CMe)3](-), [UO2(O2CMe)2(phpao)](-), [UO2(O2CMe)(phpao)2](-) and [UO2(phpao)3](-) species. A common structural motif of the complexes containing the anionic mepao(-) (, ) and phpao(-) () ligands is that the deprotonated oximate group prefers to bind in the η(2) fashion forming a 3-membered chelating ring in spite of the presence of a pyridyl nitrogen atom, whose coordination would be expected to lead to 5- or 6-membered chelating rings.

14.
Photosynth Res ; 130(1-3): 225-235, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27037826

ABSTRACT

Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 33+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O2/(mol Mn·s)) in the presence of Ru(bpy) 33+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.


Subject(s)
Manganese Compounds/metabolism , Oxidation-Reduction , Oxides/metabolism , Water/metabolism , Catalysis , Manganese Compounds/chemistry , Microscopy, Electron, Transmission , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Silica Gel/chemistry
15.
Chem Rev ; 116(5): 2886-936, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26812090

ABSTRACT

All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.


Subject(s)
Coordination Complexes/chemistry , Manganese Compounds/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Biomimetics , Catalysis , Oxidation-Reduction , Oxides/chemistry
16.
Chemistry ; 21(38): 13321-9, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26230414

ABSTRACT

The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.85 CH3 CN⋅1.58 H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]⋅0.52 CH3 CN⋅1.71 H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]⋅2.39 CH3 CN⋅0.12 H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions.

17.
Photosynth Res ; 126(2-3): 477-87, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26076756

ABSTRACT

We synthesized manganese oxides supported on gold nanoparticles (diameter <100 nm) by the reaction of KMnO4 with gold nanoparticles under hydrothermal conditions. In this green method Mn oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed.


Subject(s)
Manganese Compounds/chemical synthesis , Nanoparticles/chemistry , Oxides/chemical synthesis , Catalysis , Cerium/chemistry , Gold/chemistry , Manganese Compounds/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nitrates/chemistry , Oxidation-Reduction , Oxides/chemistry , Water/chemistry , X-Ray Diffraction
18.
J Photochem Photobiol B ; 152(Pt A): 112-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25779749

ABSTRACT

Nano-sized Mn oxides contain Mn3O4, ß-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of ß-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for ß-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed.


Subject(s)
Manganese Compounds/metabolism , Manganese/metabolism , Metal Nanoparticles , Oxides/metabolism , Water/metabolism , beta-Cyclodextrins/metabolism , Manganese/chemistry , Manganese Compounds/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Oxides/chemistry , Water/chemistry , X-Ray Diffraction , beta-Cyclodextrins/chemistry
20.
Photosynth Res ; 126(2-3): 489-98, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25701552

ABSTRACT

Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides.


Subject(s)
Cerium/chemistry , Lanthanum/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Photosystem II Protein Complex/chemistry , Water/chemistry , Cations , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nitrates/chemistry , Oxidation-Reduction , Oxygen/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...