Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Microbiol ; 37(3): 595-605, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10931353

ABSTRACT

Yeast cells display an adaptive stress response when exposed to weak organic acids at low pH. This adaptation is important in the spoilage of preserved foods, as it allows growth in the presence of weak acid food preservatives. In Saccharomyces cerevisiae, this stress response leads to strong induction of the Pdr12 ATP-binding cassette (ABC) transporter, which catalyses the active efflux of weak acid anions from the cytosol of adapted cells. S. cerevisiae cells lacking the Cmk1 isoform of Ca2+-calmodulin-dependent protein kinase are intrinsically resistant to weak acid stress, in that they do not need to spend a long adaptive period in lag phase before resuming growth after exposure to this stress. This resistance of the cmk1 mutant is Pdr12 dependent and, unlike with wild-type S. cerevisiae, cmk1 cells are capable of performing Pdr12-specific functions such as energy-dependent cellular extrusion of fluorescein and benzoate. However, they have neither higher PDR12 gene promoter activity nor higher Pdr12 protein levels. The increased Pdr12 activity in cmk1 cells is therefore caused by Cmk1 exerting a negative post-transcriptional influence over the activity of the Pdr12 ABC transporter, a transporter protein that is constitutively expressed in low-pH yeast cultures. This is the first preliminary evidence that shows a protein kinase, either directly or indirectly, regulating the activity of a yeast ABC transporter.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Drug Resistance, Microbial/genetics , Fungal Proteins , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/genetics , Saccharomyces cerevisiae/genetics , ATP-Binding Cassette Transporters/metabolism , Acids/pharmacology , Gene Deletion , Organic Chemicals/pharmacology , Protein Processing, Post-Translational/genetics , Saccharomyces cerevisiae/metabolism
2.
J Bacteriol ; 181(15): 4644-52, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10419965

ABSTRACT

Growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid results in the induction of the ATP-binding cassette (ABC) transporter Pdr12 in the plasma membrane (P. Piper, Y. Mahe, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. Muhlbauer, P. Coote, and K. Kuchler, EMBO J. 17:4257-4265, 1998). Pdr12 appears to mediate resistance to water-soluble, monocarboxylic acids with chain lengths of from C(1) to C(7). Exposure to acids with aliphatic chain lengths greater than C(7) resulted in no observable sensitivity of Deltapdr12 mutant cells compared to the parent. Parent and Deltapdr12 mutant cells were grown in the presence of sorbic acid and subsequently loaded with fluorescein. Upon addition of an energy source in the form of glucose, parent cells immediately effluxed fluorescein from the cytosol into the surrounding medium. In contrast, under the same conditions, cells of the Deltapdr12 mutant were unable to efflux any of the dye. When both parent and Deltapdr12 mutant cells were grown without sorbic acid and subsequently loaded with fluorescein, upon the addition of glucose no efflux of fluorescein was detected from either strain. Thus, we have shown that Pdr12 catalyzes the energy-dependent extrusion of fluorescein from the cytosol. Lineweaver-Burk analysis revealed that sorbic and benzoic acids competitively inhibited ATP-dependent fluorescein efflux. Thus, these data provide strong evidence that sorbate and benzoate anions compete with fluorescein for a putative monocarboxylate binding site on the Pdr12 transporter.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cell Membrane/metabolism , Saccharomyces cerevisiae/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine Triphosphate/metabolism , Anions/metabolism , Biological Transport/drug effects , Carboxylic Acids/pharmacology , Cytosol/metabolism , Fluorescein/pharmacokinetics , Hydrogen-Ion Concentration , Kinetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Structure-Activity Relationship , Time Factors , Vanadates/pharmacology
3.
Antimicrob Agents Chemother ; 42(9): 2160-70, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9736528

ABSTRACT

The inhibitory activity of a truncated derivative of the natural amphibian skin peptide dermaseptin s3-(1-16)-NH2 [DS s3 (1-16)] against Saccharomyces cerevisiae was studied. Significant growth inhibition was observed after exposure to 3.45 microgram of the peptide per ml at pH 6.0 and 7.0, with complete growth inhibition occurring at 8.63 microgram of peptide per ml for all pH values tested. Using confocal scanning laser microscopy, we have shown that DS s3 (1-16) disrupted the yeast cell membrane resulting in the gross permeabilization of the cell to the nuclear stain ethidium bromide. However, the principal inhibitory action of the peptide was not due to disruption of intracellular pH homeostasis. Instead, growth inhibition by the peptide correlated with the efflux of important cellular constituents such as ADP, ATP, RNA, and DNA into the surrounding medium. The combination of DS s3 (1-16) with mild heating temperatures as low as 35 degreesC significantly enhanced the inhibitory effect of the peptide (8.63 microgram/ml), and at 45 degreesC greater than 99% of the population was killed in 10 min. In summary, a derivative of a natural antimicrobial peptide has potential, either alone or in combination with mild heating, to prevent the growth of or kill spoilage yeast.


Subject(s)
Amphibian Proteins , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides , Peptides/pharmacology , Saccharomyces cerevisiae/drug effects , Amino Acid Sequence , Hydrogen-Ion Concentration , Molecular Sequence Data , Saccharomyces cerevisiae/growth & development , Temperature
4.
J Appl Microbiol ; 85(6): 1056-66, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9871326

ABSTRACT

The effects of sorbic acid and amphotericin B on the growth and intracellular pH (pHi) of Saccharomyces cerevisiae were studied and compared. Past evidence has suggested that the inhibitory action of sorbic acid on yeast is due to reduction of pHi per se. However, using a novel method to measure pHi in growing cells, little correlation was found between reduced growth rate on exposure to sorbic acid and reduction of pHi. In fact, growth inhibition correlated with an increase in the intracellular ADP/ATP ratio due to increased ATP consumption by the cells. This was partly attributed to the activation of protective mechanisms, such as increased proton pumping by the membrane H(+)-ATPase, which ensured that pHi did not decline when cells were exposed to sorbic acid. Therefore, the available evidence suggested that the inhibitory action of sorbic acid was due to the induction of an energetically expensive protective mechanism that compensated for any disruption of pHi homeostasis but resulted in less available energy for normal growth. In contrast to sorbic acid, with amphotericin B there was a direct correlation between growth inhibition and reduction of pHi due to the uncoupling effect of this compound on the plasma membrane. The inhibitory effect of amphotericin B was consistent with membrane disruption, or 'proton-uncoupling' leading to growth inhibition due to proton influx, decline in pHi and partial dissipation of the proton gradient.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Saccharomyces cerevisiae/drug effects , Sorbic Acid/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cell Membrane Permeability , Hydrogen-Ion Concentration , Intracellular Fluid , Protons , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
5.
Appl Environ Microbiol ; 62(9): 3158-64, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8795204

ABSTRACT

The weak acid sorbic acid transiently inhibited the growth of Saccharomyces cerevisiae in media at low pH. During a lag period, the length of which depended on the severity of this weak-acid stress, yeast cells appeared to adapt to this stress, eventually recovering and growing normally. This adaptation to weak-acid stress was not due to metabolism and removal of the sorbic acid. A pma1-205 mutant, with about half the normal membrane H+-ATPase activity, was shown to be more sensitive to sorbic acid than its parent. Sorbic acid appeared to stimulate plasma membrane H+-ATPase activity in both PMA1 and pma1-205. Consistent with this, cellular ATP levels showed drastic reductions, the extent of which depended on the severity of weak-acid stress. The weak acid did not appear to affect the synthesis of ATP because CO2 production and O2 consumption were not affected significantly in PMA1 and pma1-205 cells. However, a glycolytic mutant, with about one-third the normal pyruvate kinase and phosphofructokinase activity and hence a reduced capacity to generate ATP, was more sensitive to sorbic acid than its isogenic parent. These data are consistent with the idea that adaptation by yeast cells to sorbic acid is dependent on (i) the restoration of internal pH via the export of protons by the membrane H+-ATPase in an energy-demanding process and (ii) the generation of sufficient ATP to drive this process and still allow growth.


Subject(s)
Food Preservatives/pharmacology , Glycolysis , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/drug effects , Sorbic Acid/pharmacology , Adaptation, Physiological , Adenosine Triphosphate/metabolism , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Oxygen Consumption , Saccharomyces cerevisiae/physiology
6.
J Appl Bacteriol ; 70(6): 489-94, 1991 Jun.
Article in English | MEDLINE | ID: mdl-1938673

ABSTRACT

Conventional heating was used to expose cells of Listeria monocytogenes, either in broth or in situ on chicken skin, to the mean times and temperatures that are achieved during a 28 min period of microwave cooking of a whole chicken. Heating L. monocytogenes by this method in culture broth resulted in a reduction in viable cell numbers by a factor of greater than 10(6) upon reaching 70 degrees C. Simulated microwave cooking of L. monocytogenes in situ, on chicken skin, resulted in more variability in the numbers of survivors. Heating for the full cook time of 28 min, however, resulted in a mean measured temperature of 85 degrees C and no surviving listerias were detected. This indicated a reduction in viable numbers of greater than 10(6). To reduce temperature variation, cells were heated on skin in a submerged system in which exposure to 70 degrees C for 2 min resulted in a reduction in viable cell numbers of all strains of listerias tested of between 10(6) and 10(8). These results show that when a temperature of 70 degrees C is reached and maintained for at least 2 min throughout a food there is a substantial reduction in the numbers of L. monocytogenes. The survival of this organism during microwave heating when temperatures of over 70 degrees C are reported is probably due to uneven heating by microwave ovens resulting in the presence of cold spots in the product. The heat resistance of L. monocytogenes is comparable with that of many other non-sporing mesophilic bacteria.


Subject(s)
Food Microbiology , Hot Temperature , Listeria monocytogenes/growth & development , Animals , Chickens , Colony Count, Microbial , Cooking , Microwaves , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...