Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 20(1): 1052-1062, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33337894

ABSTRACT

DIX-domain containing 1 (Dixdc1) is an important regulator of neuronal development including cortical neurogenesis, neuronal migration and synaptic connectivity, and sequence variants in the gene have been linked to autism spectrum disorders (ASDs). Previous studies indicate that Dixdc1 controls neurogenesis through Wnt signaling, whereas its regulation of dendrite and synapse development requires Wnt and cytoskeletal signaling. However, the prediction of these signaling pathways is primarily based on the structure of Dixdc1. Given the role of Dixdc1 in neural development and brain disorders, we hypothesized that Dixdc1 may regulate additional signaling pathways in the brain. We performed transcriptomic and proteomic analyses of Dixdc1 KO mouse cortices to reveal such alterations. We found that transcriptomic approaches do not yield any novel findings about the downstream impacts of Dixdc1. In comparison, our proteomic approach reveals that several important mitochondrial proteins are significantly dysregulated in the absence of Dixdc1, suggesting a novel function of Dixdc1.


Subject(s)
Autistic Disorder , Intracellular Signaling Peptides and Proteins , Animals , Cell Movement , Mice , Microfilament Proteins , Proteomics
2.
Am J Hum Genet ; 102(2): 278-295, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395074

ABSTRACT

Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.


Subject(s)
Chromosome Disorders/enzymology , Chromosome Disorders/genetics , Deubiquitinating Enzymes/physiology , Endopeptidases/genetics , Intellectual Disability/enzymology , Intellectual Disability/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Seizures/enzymology , Seizures/genetics , Animals , Autism Spectrum Disorder/genetics , Chromosome Deletion , Chromosomes, Human, Pair 15/enzymology , Chromosomes, Human, Pair 15/genetics , Dendritic Spines/metabolism , Deubiquitinating Enzymes/genetics , Endopeptidases/metabolism , Female , Gene Deletion , Genetic Association Studies , Humans , Male , Mice , Phenotype , Prosencephalon/pathology
3.
Cell Rep ; 17(7): 1892-1904, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27829159

ABSTRACT

The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs). DIX domain containing 1 (DIXDC1) has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.


Subject(s)
Dendrites/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mutation/genetics , Animals , Autistic Disorder/metabolism , Autistic Disorder/pathology , Brain/metabolism , Dendritic Spines/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Mice, Inbred C57BL , Mice, Knockout , Microtubules/metabolism , Mutation, Missense/genetics , Phosphorylation , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...