Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 80(9): 2263-6, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12350003

ABSTRACT

Data from two purebred swine lines A (n = 6,022) and B (n = 24,170), and their reciprocal, cross C (n = 6,135), were used to examine gains in reliability of combined purebred and crossbred evaluation over conventional within-line evaluations using crossbred and pureline models. Random effects in the pureline model included additive, parental dominance, and litter. In the crossbred model, effects were as in the pureline model except traits of each line were treated as separate traits and two additive effects were present. The approximate model was the same as the pureline except it was used for all lines disregarding breed differences. The traits in the evaluation were lifetime daily gain (LDG) and backfat. When separate line evaluations were replaced by evaluations with crossbreds, mean reliabilities of predicted breeding values increased by 2 to 9% for purebreds and by 21 to 72% for crossbreds. Rank correlations between these breeding values were > 0.99 for purebreds but 0.85 to 0.87 for crossbreds. Rank correlations between predicted breeding values obtained from crossbred and approximate models were 0.98 to 0.99 for purebreds and 0.96 to 0.98 for crossbreds. When the number of crossbreds was small in comparison to purebreds, the increase in reliability by using the crossbred data and the crossbred model as opposed to purebred models was small for purebreds but large for crossbreds. The approximate model provided very similar rankings to the crossbred model for purebreds but rankings were less consistent for crossbreds.


Subject(s)
Crosses, Genetic , Models, Genetic , Swine/genetics , Animals , Body Weight , Breeding , Female , Genetic Variation , Male , Models, Biological
2.
J Anim Sci ; 79(12): 3002-7, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11811453

ABSTRACT

Records on lifetime daily gain and backfat from two purebred lines A (n = 6,022), B (n = 24,170), and their reciprocal crosses C (n = 6,135) were used to estimate genetic parameters using within-line and terminal-cross models. The models that were fitted included fixed (contemporary group and sex), random additive A and(or) random additive B, random dominance, and random litter effects. Model for purebreds included only one additive effect, whereas the model for crossbreds included two additive effects. End weight was included as a covariable for backfat. Heritability estimates for lifetime daily gain were 0.26, 0.28, and 0.23 with within-line models for lines A, B, and C, respectively, and 0.26, 0.30, and 0.27 with the crossbred model, respectively. Heritability estimates for backfat were 0.52, 0.35, and 0.29 with within-line models for lines A, B, and C, respectively, and 0.51, 0.38, and 0.29 with the crossbred model, respectively. The genetic correlations between purebreds and crossbreds (r(pc)) for lifetime daily gain were 0.99 (A-C) and 0.62 (B-C); for backfat the correlations were 0.32 (A-C) and 0.70 (B-C). The amount of dominance variance from the crossbred model expressed as a proportion of phenotypic variance for lifetime daily gain was 0.39, 0.16, and 0.29 for lines A, B, and C respectively. Dominance variance for backfat was estimated as 0. A joint evaluation of purebreds and crossbreds would be most efficient with the crossbred model. The dominance variation should be accounted for lifetime daily gain.


Subject(s)
Adipose Tissue/anatomy & histology , Body Weight/genetics , Breeding , Crosses, Genetic , Models, Genetic , Swine/genetics , Animals , Female , Genes, Dominant/genetics , Genetic Testing/veterinary , Genetic Variation , Male , Models, Biological , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...