Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 85(1): 4, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471174

ABSTRACT

We study epidemic arrival times in meta-population disease models through the lens of front propagation into unstable states. We demonstrate that several features of invasion fronts in the PDE context are also relevant to the network case. We show that the susceptible-infected-recovered model on a network is linearly determined in the sense that the arrival times in the nonlinear system are approximated by the arrival times of the instability in the system linearized near the disease-free state. Arrival time predictions are extended to general compartmental models with a susceptible-exposed-infected-recovered model as the primary example. We then study a recent model of social epidemics where higher-order interactions lead to faster invasion speeds. For these pushed fronts, we compute corrections to the estimated arrival time in this case. Finally, we show how inhomogeneities in local infection rates lead to faster average arrival times.


Subject(s)
Epidemics , Models, Biological , Humans , Mathematical Concepts , Disease Susceptibility , Reproduction
2.
J Math Biol ; 85(4): 39, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36136245

ABSTRACT

A model of population growth and dispersal is considered where the spatial habitat is a lattice and reproduction occurs generationally. The resulting discrete dynamical system exhibits velocity locking, where rational speed invasion fronts are observed to persist as parameters are varied. In this article, we construct locked fronts for a particular piecewise linear reproduction function. These fronts are shown to be linear combinations of exponentially decaying solutions to the linear system near the unstable state. Based upon these front solutions, we then derive expressions for the boundary of locking regions in parameter space. We obtain leading order expansions for the locking regions in the limit as the migration parameter tends to zero. Strict spectral stability in exponentially weighted spaces is also established.


Subject(s)
Ecosystem , Population Growth , Reproduction
3.
Chaos ; 28(1): 013105, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29390617

ABSTRACT

We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

4.
J Math Biol ; 49(6): 577-603, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15565447

ABSTRACT

It is known [8, 11, 16, 26] that phase locking can entrain frequency information when the leaky integrate-and-fire (IF) model of a neuron is forced by a periodic function. We show that this is still the case when the IF model is made more biologically realistic. We incorporate into our model spike dependent threshold modulation and refractory periods. Consecutive firing times from this model and their respective interspike intervals are related by an annulus map. We prove a general theorem concerning orientation reversing annulus twist homeomorphisms, which shows that our map admits a unique rotation number. This implies, in particular, that chaotic behaviour is not possible in our model and phase locking is predicted.


Subject(s)
Action Potentials/physiology , Models, Neurological , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...