Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675533

ABSTRACT

Aryl and heteroaryl iodides have been efficiently converted into the corresponding thioacetates in cyclopentyl methyl ether (CPME), a green solvent, under Cu catalysis. The chemoselectivity of the reaction is mainly controlled by electronic factors, enabling the conversion of both electron-rich and electron-deficient substrates into the corresponding thioacetates in good to excellent yields. The products can be easily deprotected to the corresponding thiolates to carry out additional synthetic transformations in situ. Surprisingly, despite CPME's relatively low dielectric constant, the reaction rate significantly increased when conducted under microwave irradiation conditions. This synthetic methodology exhibits a remarkable tolerance to functional groups, mild reaction conditions, and a wide substrate scope, utilizing a safe and inexpensive CuI pre-catalyst in the green solvent CPME. A non-aqueous workup allowing for the complete recovery of both catalyst and solvent makes this approach an environmentally sustainable protocol for C(sp2) sulfur functionalization. Additionally, the reaction shows selective cross-coupling with iodides in competition with chlorides and bromides, allowing its use in multistep syntheses. To demonstrate the potential of this methodology, it was applied to the high-yield synthesis of a photochromic dithienylethene, where a selective synthesis had not been reported before.

2.
Eur J Med Chem ; 262: 115891, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37897926

ABSTRACT

Our research group recently identified a rearrangement product of pirenzepine as starting point for a comprehensive rational drug design approach towards orthosteric muscarinic acetylcholine receptor ligands. Chemical reduction and bioscaffold hop lead to the development of sixteen promising compounds featuring either a benzimidazole or carbamate moiety, all exhibiting comparable pharmacophoric characteristics. The synthesized compounds were characterized by NMR, HR-MS, and RP-HPLC techniques. Subsequent evaluation encompassed binding affinity assessment on CHO-hM1-5 cells, mode of action determination, and analysis of physico-chemical parameters. The CNS MPO score indicated favorable drug-like attributes and potential CNS activity for the antagonistic ligands. The most promising compounds displayed Ki-values within a desirable low nanomolar range, and their structural features allow for potential carbon-11 radiolabeling. Our optimization efforts resulted in compounds with a remarkable 138-fold increase in binding affinity compared to the previously mentioned rearrangement product towards human M5, suggesting their prospective utility in positron emission tomography applications.


Subject(s)
Muscarine , Muscarinic Antagonists , Humans , Muscarinic Antagonists/pharmacology , Ligands , Protein Binding
3.
Chem Sci ; 14(37): 10140-10146, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37772102

ABSTRACT

Due to the well known reactivity of C(O)-N functionalities towards canonical C1-homologating agents (e.g. carbenoids, diazomethane, ylides), resulting in the extrusion of the N-centered fragment en route to carbonyl compounds, formal C1-insertions within N-O bonds still remain obscure. Herein, we document the homologative transformation of N-methyl-N-oxyamides - with high tolerance for diverse O-substituents - into N-acyl-N,O-acetals. Under controlled basic conditions, the N-methyl group of the same starting materials acts as a competent precursor of the methylene synthon required for the homologation. The logic is levered on the formation of an electrophilic iminium ion (via N-O heterolysis) susceptible to nucleophilic attack by the alkoxide previously expulsed. The procedure documents genuine chemocontrol and flexibility, as judged by the diversity of substituents placed on both amide and nitrogen linchpins. The mechanistic rationale was validated through experiments conducted on D-labeled materials which unambiguously attributed the origin of the methylene fragment to the N-methyl group of the starting compounds.

4.
Molecules ; 27(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35630651

ABSTRACT

The muscarinic acetylcholine receptor family is a highly sought-after target in drug and molecular imaging discovery efforts aimed at neurological disorders. Hampered by the structural similarity of the five subtypes' orthosteric binding pockets, these efforts largely failed to deliver subtype-selective ligands. Building on our recent successes with arecaidine-derived ligands targeting M1, herein we report the synthesis of a related series of 11 hydroxylated arecaidine esters. Their physicochemical property profiles, expressed in terms of their computationally calculated CNS MPO scores and HPLC-logD values, point towards blood-brain barrier permeability. By means of a competitive radioligand binding assay, the binding affinity values towards each of the individual human mAChR subtypes hM1-hM5 were determined. The most promising compound of this series 17b was shown to have a binding constant towards hM1 in the single-digit nanomolar region (5.5 nM). Similar to our previously reported arecaidine-derived esters, the entire series was shown to act as hM1R antagonists in a calcium flux assay. Overall, this study greatly expanded our understanding of this recurring scaffolds' structure-activity relationship and will guide the development towards highly selective mAChRs ligands.


Subject(s)
Receptors, Muscarinic , Signal Transduction , Arecoline/analogs & derivatives , Binding, Competitive , Humans , Ligands , Receptors, Muscarinic/metabolism
5.
Chem Commun (Camb) ; 58(38): 5761-5764, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35450981

ABSTRACT

The commercially available and experimentally convenient (bp 65 °C) difluoromethyltrimethylsilane (TMSCHF2) is proposed as a valuable difluoromethylating transfer reagent for delivering the CHF2 moiety to various heteroatom-based electrophiles. Upon activation with an alkoxide, a conceptually intuitive nucleophilic displacement directly furnishes in high yields the bench-stable analogues.


Subject(s)
Indicators and Reagents
6.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215360

ABSTRACT

Due to their important role in mediating a broad range of physiological functions, muscarinic acetylcholine receptors (mAChRs) have been a promising target for therapeutic and diagnostic applications alike; however, the list of truly subtype-selective ligands is scarce. Within this work, we have identified a series of twelve 4,4'-difluorobenzhydrol carbamates through a rigorous docking campaign leveraging commercially available amine databases. After synthesis, these compounds have been evaluated for their physico-chemical property profiles, including characteristics such as HPLC-logD, tPSA, logBB, and logPS. For all the synthesized carbamates, these characteristics indicate the potential for BBB permeation. In competitive radioligand binding experiments using Chinese hamster ovary cell membranes expressing the individual human mAChR subtype hM1-hM5, the most promising compound 2 displayed a high binding affinitiy towards hM1R (1.2 nM) while exhibiting modest-to-excellent selectivity versus the hM2-5R (4-189-fold). All 12 compounds were shown to act in an antagonistic fashion towards hM1R using a dose-dependent calcium mobilization assay. The structural eligibility for radiolabeling and their pharmacological and physico-chemical property profiles render compounds 2, 5, and 7 promising candidates for future position emission tomography (PET) tracer development.

7.
Sci Rep ; 11(1): 23397, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862437

ABSTRACT

Pharmacovigilance aims at a better understanding of the molecular events triggered by medications to prevent adverse effects, which despite significant advances in our analytical repertoire plague the use of drugs until today. In this study, we find that clinically prescribed and commercially available pirenzepine may not be the correct compound. Pirenzepine can undergo an unexpected scaffold rearrangement from the pharmaceutical active ingredient (API) to a previously uncharacterized benzimidazole. The rearrangement occurs under highly acidic conditions, which were believed to favour the dihydrochloride formation of pirenzepine. The rearranged products of pirenzepine and the structurally related telenzepine have significantly decreased affinity for the muscarinic acetylcholine receptor, the pharmacological target of these compounds. Fortunately, in situ rearrangement after oral application is no safety issue, as we show that reaction kinetics in gastric acid prevent rearrangement. The research community should consider appropriate measures to perform reliable receiving inspections in the commercial supply of well described and frequently used chemicals, in particular if experiments yield unexpected results.


Subject(s)
Gastric Acid/chemistry , Pirenzepine/analogs & derivatives , Pirenzepine/chemistry , Receptors, Muscarinic/metabolism , Animals , Chromatography, High Pressure Liquid , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Pharmacovigilance , Pirenzepine/pharmacology , Structure-Activity Relationship
8.
Angew Chem Int Ed Engl ; 60(47): 24854-24858, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34534400

ABSTRACT

A formal CH2 -CH2 homologation conducted with C1 carbenoids on a carbon electrophile for the obtainment of a four-membered cycle is reported. The logic proposes the consecutive delivery of two single nucleophilic CH2 units to an isothiocyanate-as competent electrophilic partner-resulting in the assembling of a rare imino-thietane cluster. The single synthetic operation procedure documents genuine chemocontrol, as indicated by the tolerance to various reactive elements decorating the starting materials. Significantly, the double homologation protocol is accomplished directly on a carbon electrophile, thus not requiring the installation of heteroatom-centered manifolds (e.g. boron).

9.
Org Biomol Chem ; 19(11): 2425-2429, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33666635

ABSTRACT

The direct transfer of different α-substituted methyllithium reagents to chlorinated phosphorous electrophiles of diverse oxidation state (phosphates, phosphine oxides and phosphines) is proposed as an effective strategy to synthesize geminal P-containing methanes. The methodology relies on the efficient nucleophilic substitution conducted on the P-chlorine linkage. Uniformly high yields are observed regardless the specific nature of the carbanion employed: once established the conditions for generating the competent nucleophile (LiCH2Hal, LiCHHal2, LiCH2CN, LiCH2SeR etc.) the homologated compounds are obtained via a single operation. Some P-containing formal carbanions have been evaluated in transferring processes, including the carbonyl-difluoromethylation of the opioid agent Hydrocodone.

10.
Org Biomol Chem ; 19(9): 2038-2043, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33599644

ABSTRACT

The intrinsic degradative α-elimination of Li carbenoids somehow complicates their use in synthesis as C1-synthons. Nevertheless, we herein report how boosting such an α-elimination is a straightforward strategy for accomplishing controlled ring-opening of epoxides to furnish the corresponding ß-halohydrins. Crucial for the development of the method is the use of the eco-friendly solvent 2-MeTHF, which forces the degradation of the incipient monohalolithium, due to the very limited stabilizing effect of this solvent on the chemical integrity of the carbenoid. With this approach, high yields of the targeted compounds are consistently obtained under very high regiocontrol and, despite the basic nature of the reagents, no racemization of enantiopure materials is observed.

11.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573283

ABSTRACT

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 229E, Human/metabolism , Dipeptides/chemistry , Ketones/chemistry , A549 Cells , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Line , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Thermodynamics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
12.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266067

ABSTRACT

Muscarinic acetylcholine receptors (mAChRs) are a pivotal constituent of the central and peripheral nervous system. Yet, therapeutic and diagnostic applications thereof are hampered by the lack of subtype selective ligands. Within this work, we synthesized and chemically characterized three different stereoisomers of hydrobenzoin esters of arecaidine by NMR, HR-MS, chiral chromatography, and HPLC-logP. All compounds are structurally eligible for carbon-11 labeling and show appropriate stability in Dulbecco's phosphate-buffered saline (DPBS) and F12 cell culture medium. A competitive radioligand binding assay on Chinese hamster ovary cell membranes comprising the human mAChR subtypes M1-M5 showed the highest orthosteric binding affinity for subtype M1 and a strong influence of stereochemistry on binding affinity, which corresponds to in silico molecular docking experiments. Ki values toward M1 were determined as 99 ± 19 nM, 800 ± 200 nM, and 380 ± 90 nM for the (R,R)-, (S,S)-, and racemic (R,S)-stereoisomer, respectively, highlighting the importance of stereochemical variations in mAChR ligand development. All three stereoisomers were shown to act as antagonists toward mAChR M1 using a Fluo-4 calcium efflux assay. With respect to future positron emission tomography (PET) tracer development, the (R,R)-isomer appears especially promising as a lead structure due to its highest subtype selectivity and lowest Ki value.

13.
Org Lett ; 22(19): 7629-7634, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32910659

ABSTRACT

The sequential installation of a carbenoid and a hydride into a carbonyl, furnishing halomethyl alkyl derivatives, is reported. Despite the employment of carbenoids as nucleophiles in reactions with carbon-centered electrophiles, sp3-type alkyl halides remain elusive materials for selective one-carbon homologations. Our tactic levers on using carbonyls as starting materials and enables uniformly high yields and chemocontrol. The tactic is flexible and is not limited to carbenoids. Also, diverse carbanion-like species can act as nucleophiles, thus making it of general applicability.

14.
Chem Commun (Camb) ; 56(82): 12395-12398, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32935694

ABSTRACT

A sequential C1-homologation-nucleophilic substitution tactic is presented for the preparation of rare unsymmetrical dithioacetals. The judicious selection of thiosulfonates as convenient sulfur electrophilic sources - upon the homologation event conducted on an intermediate α-halothioether - guarantees the release of the non-reactive sulfonate group, thus enabling the subsequent nucleophilic displacement with an external added thiol [(hetero)aromatic and/or aliphatic]. Uniform high yields and excellent chemocontrol were deduced during the extensive scope study, thus documenting the versatility of the direct technique for the preparation of these unique and manipulable materials.

15.
Chemistry ; 26(69): 16246-16250, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32668046

ABSTRACT

The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN →π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17 O NMR and 15 N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.

16.
Eur J Med Chem ; 204: 112623, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32717485

ABSTRACT

Supported by their involvement in many neurodegenerative disorders, muscarinic acetylcholine receptors (mAChRs) are an interesting target for PET imaging. Nevertheless, no radiotracer is established in clinical routine. Within this work we aim to develop novel PET tracers based on the structure of arecoline. Fifteen novel arecoline derivatives were synthesized, characterized and tested for their affinity to the mAChRs M1-M5 and the conceivable off-target acetylcholinesterase. Five arecoline derivatives and arecoline were labeled with carbon-11 in good yields. Arecaidine diphenylmethyl ester (3b), arecaidine bis(4-fluorophenyl)methyl ester (3c) and arecaidine (4-bromophenyl)(4-fluorophenyl)methyl ester (3e) showed a tremendous gain in mAChR affinity compared to arecoline and a pronounced subtype selectivity for M1. Metabolic stability and serum protein binding of [11C]3b and [11C]3c were in line with properties of established brain tracers. Nonspecific binding of [11C]3c was prevalent in kinetic and endpoint experiment on living cells as well as in autoradiography on native mouse brain sections, which motivates us to decrease the lipophilicity of this substance class prior to in vivo experiments.


Subject(s)
Arecoline/analogs & derivatives , Positron-Emission Tomography , Radiopharmaceuticals/metabolism , Receptor, Muscarinic M1/metabolism , Animals , Arecoline/metabolism , Arecoline/pharmacology , Brain/metabolism , CHO Cells , Cricetulus , Humans , Ligands , Magnetic Resonance Spectroscopy/methods , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Weight , Radioligand Assay , Structure-Activity Relationship
17.
Org Lett ; 22(4): 1345-1349, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32004004

ABSTRACT

The commercially available fluoroiodomethane represents a valuable and effective electrophilic source for transferring the CH2F unit to a series of heteroatom-centered nucleophiles under mild basic conditions. The excellent manipulability offered by its liquid physical state (bp 53.4 °C) enables practical and straightforward one-step nucleophilic substitutions to retain the chiral information embodied, thus allowing it to overcome de facto the requirement for fluoromethylating agents with no immediate access. The high-yielding methodology was successfully applied to a variety of nucleophiles including a series of drugs currently in the market.

18.
Angew Chem Int Ed Engl ; 59(47): 20852-20857, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33448561

ABSTRACT

The selective formal insertion (homologation) of a carbon unit bridging the two trifluoroacetamidoyl chlorides (TFAICs) units is reported. The tactic is levered on a highly chemoselective homologation-metalation-acyl nucleophilic substitution sequence which precisely enables to assemble novel trifluoromethylated ß-diketiminates within a single synthetic operation. Unlike previous homologations conducted with LiCH2Cl furnishing aziridines, herein we exploit the unique capability of iodomethyllithium to act contemporaneously as a C1 source (homologating effect) and metalating agent. The mechanistic rationale grounded on experimental evidences supports the hypothesized proposal and, the structural analysis gathers key aspects of this class of valuable ligands in catalysis.

19.
Mol Divers ; 24(4): 1025-1042, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31713185

ABSTRACT

A series of benzopyrano[2,3-c]pyrazol-4(2H)-one derivatives were synthesized from readily available 1-phenyl- and 1-methyl-1H-pyrazol-3-ols by sequentially employing O-acylation, Fries rearrangement and potassium carbonate-induced cyclization. The anthelmintic properties of the obtained compounds were investigated in vivo in a model nematode, Caenorhabditis elegans. Five compounds, namely 2-phenyl[1]benzopyrano[2,3-c]pyrazol-4(2H)-one 33 and its 7-fluoro, 7-chloro-, 7-bromo- and 8-fluoro-analogues, 36, 38, 40 and 43, respectively, altered the development of C. elegans. While the activities of 33 and 43 were rather modest, compounds 36, 38 and 40 inhibited the growth of the worms at concentrations of approximately 1-3 µM. At these concentrations, the compounds did not kill the worms, but they strongly inhibited their development, with the majority of larvae never progressing past the L1 stage. Moreover, testing in non-cancer human cell lines showed that, with exception of 7-bromo derivative 40, the active compounds have favourable toxicity profiles.


Subject(s)
Anthelmintics/chemical synthesis , Anthelmintics/pharmacology , Pyrazoles/chemistry , Animals , Caenorhabditis elegans/drug effects , Cell Line , Cyclization/drug effects , Humans , Larva/drug effects , Structure-Activity Relationship
20.
Org Lett ; 21(20): 8261-8265, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31599599

ABSTRACT

The homologation of Weinreb amides into difluoromethylketones with a formal nucleophilic CHF2 transfer agent is reported. Activating TMSCHF2 with potassium tert-amylate enables a convenient access to the difluorinated homologation reagent, which adds to the acylating partners. The high chemoselectivity showcased in the presence of variously multifunctionalized Weinreb amides, jointly with uniformly high yields, enables the strategy of general applicability without requiring any stabilization element for the putative carbanion.


Subject(s)
Amides/chemistry , Hydrocarbons, Fluorinated/chemistry , Ketones/chemical synthesis , Methane/analogs & derivatives , Ketones/chemistry , Methane/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...