Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809150

ABSTRACT

The effectiveness of the mechanism of precipitation strengthening in metallic alloys depends on the shapes of the precipitates. Two different material systems are considered: tetragonal γ'' precipitates in Ni-based alloys and tetragonal θ' precipitates in Al-Cu-alloys. The shape formation and evolution of the tetragonally misfitting precipitates was investigated by means of experiments and phase-field simulations. We employed the method of invariant moments for the consistent shape quantification of precipitates obtained from the simulation as well as those obtained from the experiment. Two well-defined shape-quantities are proposed: (i) a generalized measure for the particles aspect ratio and (ii) the normalized λ2, as a measure for shape deviations from an ideal ellipse of the given aspect ratio. Considering the size dependence of the aspect ratio of γ'' precipitates, we find good agreement between the simulation results and the experiment. Further, the precipitates' in-plane shape is defined as the central 2D cut through the 3D particle in a plane normal to the tetragonal c-axes of the precipitate. The experimentally observed in-plane shapes of γ''-precipitates can be quantitatively reproduced by the phase-field model.

2.
Soft Matter ; 12(36): 7644-54, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27535210

ABSTRACT

Colloidal quasicrystals have received increased interest recently due to new insight in exploring their potential for photonic materials as well as for optical devices [Vardeny et al., Nat. Photonics, 2013, 7, 177]. Colloidal quasicrystals in aqueous solutions have been found in systems of micelles with impenetrable cores [Fischer et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 1810]. A simple model potential for micelle-micelle interaction is the step potential, which is infinite for core overlaps and constant for shell overlaps. Dotera et al. performed Monte Carlo simulations of the step potential model and found quasicrystals for specific values of the packing fraction η and the shell-core ratio λ [Dotera et al., Nature, 2014, 506, 208 ]. However, the overlap of real micelles causes repulsive forces, which increase with decreasing core distance. We consider this by introducing a novel model potential with repulsive forces depending on a third parameter α. In a systematic manner we study this more realistic potential with two-dimensional molecular dynamics simulations. For α = 0 the model is similar to the step potential model. For the first time, we provide a comprehensive overview of crystalline, quasicrystalline, and disordered structures as a function of η and λ. Simulations performed with α > 0 show the impact of the repulsive forces. We find that quasicrystalline structures at high densities vanish while new quasicrystalline structures appear at intermediate densities. Our results help to tailor colloidal systems for today's advanced applications in photonics and optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...