Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 806545, 2022.
Article in English | MEDLINE | ID: mdl-35557949

ABSTRACT

The skeletal system derives from multiple embryonic sources whose derivatives must develop in coordination to produce an integrated whole. In particular, interactions across the lateral somitic frontier, where derivatives of the somites and lateral plate mesoderm come into contact, are important for proper development. Many questions remain about genetic control of this coordination, and embryological information is incomplete for some structures that incorporate the frontier, including the sternum. Hox genes act in both tissues as regulators of skeletal pattern. Here, we used conditional deletion to characterize the tissue-specific contributions of Hoxa5 to skeletal patterning. We found that most aspects of the Hoxa5 skeletal phenotype are attributable to its activity in one or the other tissue, indicating largely additive roles. However, multiple roles are identified at the junction of the T1 ribs and the anterior portion of the sternum, or presternum. The embryology of the presternum has not been well described in mouse. We present a model for presternum development, and show that it arises from multiple, paired LPM-derived primordia. We show evidence that HOXA5 expression marks the embryonic precursor of a recently identified lateral presternum structure that is variably present in therians.

2.
J Exp Biol ; 224(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34477881

ABSTRACT

Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial. Individual honey bees appear to have a high capacity to endure thermal stress. One reason for this high-level endurance is likely their robust heat shock response (HSR), which contributes to thermotolerance at the cellular level. However, less is known about other mechanisms of thermotolerance, especially those operating at the tissue level. To elucidate other determinants of resilience in this species, we used thermal stress coupled with RNAseq and identified broad transcriptional remodeling of a number of key signaling pathways in the honey bee, including those pathways known to be involved in digestive tract regeneration in the fruit fly such as the Hippo and JAK/STAT pathways. We also observed cell death and shedding of epithelial cells, which likely leads to induction of this regenerative transcriptional program. We found that thermal stress affects many of these pathways in other tissues, suggesting a shared program of damage response. This study provides important foundational characterization of the tissue damage response program in this key pollinating species. In addition, our data suggest that a robust regeneration program may also be a critical contributor to thermotolerance at the tissue level, a possibility which warrants further exploration in this and other species.


Subject(s)
Heat-Shock Response , Thermotolerance , Animals , Bees , Gastrointestinal Tract , Signal Transduction
3.
Front Cell Dev Biol ; 9: 632303, 2021.
Article in English | MEDLINE | ID: mdl-33732701

ABSTRACT

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood. Hoxa5 patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show that Hoxa5 also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5. Hoxa5 null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded in Hoxa5 mutants. Conditional deletion of Hoxa5 with Myf5/Cre can reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary within Myf5-positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows that Hoxa5 does not act cell-autonomously to repress skeletal muscle fate. Interestingly, Hoxa5-dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role for Hoxa5 in multiple tissues. Together, these findings establish a role for Hoxa5 in embryonic BAT development.

4.
Methods Mol Biol ; 1920: 183-218, 2019.
Article in English | MEDLINE | ID: mdl-30737693

ABSTRACT

Analysis of gene (mRNA and protein) expression patterns is central to the study of embryonic development. This chapter details methods for detecting mRNA and protein expression in whole-mouse embryos and in tissue sections, including mRNA in situ hybridization, immunohistochemistry, and detection of enzymatic and fluorescent protein reporters. We focus on histological methods; molecular methods of measuring gene expression (for example, RNAseq, PCR) are not included here.


Subject(s)
Embryo, Mammalian , Embryonic Development , Gene Expression , Immunohistochemistry , Alkaline Phosphatase/metabolism , Animals , Biomarkers , Embryonic Development/genetics , Genes, Reporter , Immunohistochemistry/methods , In Situ Hybridization , Mice , Organ Specificity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Int J Dev Biol ; 62(11-12): 785-796, 2018.
Article in English | MEDLINE | ID: mdl-30604848

ABSTRACT

HOX proteins act during development to regulate musculoskeletal morphology. HOXA5 patterns skeletal structures surrounding the cervical-thoracic transition including the vertebrae, ribs, sternum and forelimb girdle. However, the tissue types in which it acts to pattern the skeleton, and the ultimate fates of embryonic cells that activate Hoxa5 expression are unknown. A detailed characterization of HOXA5 expression by immunofluorescence was combined with Cre/LoxP genetic lineage tracing to map the fate of Hoxa5 expressing cells in axial musculoskeletal tissues and in their precursors, the somites and lateral plate mesoderm. HOXA5 protein expression is dynamic and spatially restricted in derivatives of both the lateral plate mesoderm and somites, including a subset of the lateral sclerotome, suggesting a local role in regulating early skeletal patterning. HOXA5 expression persists from somite stages through late development in differentiating skeletal and connective tissues, pointing to a continuous and direct role in skeletal patterning. In contrast, HOXA5 expression is excluded from the skeletal muscle and muscle satellite cell lineages. Furthermore, the descendants of Hoxa5-expressing cells, even after HOXA5 expression has extinguished, never contribute to these lineages. Together, these findings suggest cell autonomous roles for HOXA5 in skeletal development, as well as non-cell autonomous functions in muscle through expression in surrounding connective tissues. They also support the notion that different Hox genes display diverse tissue specificities and locations to achieve their patterning activity.


Subject(s)
Body Patterning/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Musculoskeletal System/embryology , Phosphoproteins/metabolism , Animals , Homeodomain Proteins/genetics , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Transgenic , Musculoskeletal System/metabolism , Organogenesis/genetics , Phosphoproteins/genetics , Somites/embryology , Somites/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...