Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 3: e01632, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24668167

ABSTRACT

Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.


Subject(s)
Chromatin Assembly and Disassembly , Histones/metabolism , Nucleosomes/metabolism , Protein Processing, Post-Translational , Transcription, Genetic , Transcriptional Activation , Acetylation , Animals , Embryonic Stem Cells/metabolism , Histones/chemistry , Humans , Kinetics , Lysine , Male , Methylation , Mice , NIH 3T3 Cells , Neural Stem Cells/metabolism , Nucleic Acid Conformation , Protein Conformation , Protein Stability , Transfection , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...