Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38839106

ABSTRACT

Targeted therapies against mutant BRAF are effectively used in combination with MEK inhibitors (MEKi) to treat advanced melanoma. However, treatment success is affected by resistance and adverse events (AEs). Approved BRAF inhibitors (BRAFi) show high levels of target promiscuity, which can contribute to these effects. The blood vessel lining is in direct contact with high plasma concentrations of BRAFi, but effects of the inhibitors in this cell type are unknown. Hence, we aimed to characterize responses to approved BRAFi for melanoma in the vascular endothelium. We showed that clinically approved BRAFi induced a paradoxical activation of endothelial MAPK signaling. Moreover, phosphoproteomics revealed distinct sets of off-targets per inhibitor. Endothelial barrier function and junction integrity were impaired upon treatment with vemurafenib and the next-generation dimerization inhibitor PLX8394, but not with dabrafenib or encorafenib. Together, these findings provide insights into the surprisingly distinct side effects of BRAFi on endothelial signaling and functionality. Better understanding of off-target effects could help to identify molecular mechanisms behind AEs and guide the continued development of therapies for BRAF-mutant melanoma.


Subject(s)
Melanoma , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Signal Transduction , Vemurafenib , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Signal Transduction/drug effects , Vemurafenib/pharmacology , Oximes/pharmacology , Sulfonamides/pharmacology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Imidazoles/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , MAP Kinase Signaling System/drug effects , Carbamates/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Line, Tumor , Mutation
2.
J Cell Sci ; 134(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34345888

ABSTRACT

Dysfunction of vascular barriers is a critical step in inflammatory diseases. Endothelial tight junctions (TJs) control barrier function, and the cytoplasmic adaptor protein cingulin connects TJs to signalling pathways. However, local events at TJs during inflammation are largely unknown. In this study, we investigate the local response of TJ adaptor protein cingulin and its interaction with Rho guanine nucleotide exchange factor H1 (GEF-H1, also known as ARHGEF2) upon vascular barrier disruption to find a new approach to counteract vascular leak. Based on transendothelial-electrical-resistance (TEER) measurements, cingulin strengthened barrier integrity upon stimulation with histamine, thrombin and VEGF. Cingulin also attenuated myosin light chain 2 (MLC2; also known as MYL2) phosphorylation by localising GEF-H1 to cell junctions. By using cingulin phosphomutants, we verified that the phosphorylation of the cingulin head domain is required for its protective effect. Increased colocalisation of GEF-H1 and cingulin was observed in the vessels of vasculitis patients compared to those in healthy skin. Our findings demonstrate that cingulin can counteract vascular leak at TJs, suggesting the existence of a novel mechanism in blood endothelial cells that protects barrier function during disease.


Subject(s)
Endothelial Cells , Tight Junctions , Capillary Permeability , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Tight Junctions/metabolism
3.
J Invest Dermatol ; 140(4): 878-890.e5, 2020 04.
Article in English | MEDLINE | ID: mdl-31622599

ABSTRACT

Melanoma cells can switch between distinct gene expression profiles, resulting in proliferative or invasive phenotypes. Signaling pathways involved in this switch were analyzed by gene expression profiling of a cohort of 22 patient-derived melanoma cell lines. CDH1 negativity was identified as a surrogate marker for the invasive phenotype. CDH1 expression could be turned on and off by modulating activity of p38 or its downstream target MK2, suggesting that this pathway controls melanoma progression. Mechanistically, MK2 inhibition prevented melanoma-induced vascular barrier disruption, reduced the expression of PODXL and DEL-1, and prevented vascular dissemination in vivo. PODXL and DEL-1 expression in patients with melanoma were associated with poor survival and thus can be used as prognostic markers. Downstream targets of MK2 may thus serve as candidate therapeutics.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/genetics , Skin Neoplasms/genetics , Vascular Neoplasms/prevention & control , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Humans , Melanoma/metabolism , Melanoma/pathology , Neoplasm Invasiveness , Prognosis , Signal Transduction , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Cells, Cultured , Vascular Neoplasms/metabolism , Vascular Neoplasms/pathology , p38 Mitogen-Activated Protein Kinases/biosynthesis , p38 Mitogen-Activated Protein Kinases/genetics
4.
Sci Rep ; 8(1): 1151, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348601

ABSTRACT

Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Cell Adhesion/genetics , Gene Expression Regulation, Neoplastic , Spheroids, Cellular/metabolism , alpha Catenin/genetics , Actins/genetics , Actins/metabolism , Cadherins/deficiency , Cell Communication , Cell Line, Tumor , Cell Movement , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , HCT116 Cells , Humans , Karyotyping , Phenotype , Signal Transduction , Spheroids, Cellular/pathology , alpha Catenin/deficiency
5.
Food Chem Toxicol ; 111: 114-124, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29129665

ABSTRACT

Mechanisms how colorectal cancer (CRC) cells penetrate blood micro-vessel endothelia and metastasise is poorly understood. To study blood endothelial cell (BEC) barrier breaching by CRC emboli, an in vitro assay measuring BEC-free areas underneath SW620 cell spheroids, so called "circular chemorepellent induced defects" (CCIDs, appearing in consequence of endothelial retraction), was adapted and supported by Western blotting, EIA-, EROD- and luciferase reporter assays. Inhibition of ALOX12 or NF-κB in SW620 cells or BECs, respectively, caused attenuation of CCIDs. The FDA approved drugs vinpocetine [inhibiting ALOX12-dependent 12(S)-HETE synthesis], ketotifen [inhibiting NF-κB], carbamazepine and fenofibrate [inhibiting 12(S)-HETE and NF-κB] significantly attenuated CCID formation at low µM concentrations. In the 5-FU-resistant SW620-R/BEC model guanfacine, nifedipine and proadifen inhibited CCIDs stronger than in the naïve SW620/BEC model. This indicated that in SW620-R cells formerly silent (yet unidentified) genes became expressed and targetable by these drugs in course of resistance acquisition. Fenofibrate, and the flavonoids hispidulin and apigenin, which are present in medicinal plants, spices, herbs and fruits, attenuated CCID formation in both, naïve- and resistant models. As FDA-approved drugs and food-flavonoids inhibited established and acquired intravasative pathways and attenuated BEC barrier-breaching in vitro, this warrants testing of these compounds in CRC models in vivo.


Subject(s)
Colorectal Neoplasms/pathology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Flavonoids/pharmacology , Spheroids, Cellular/physiology , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Calcium Channel Blockers/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation, Neoplastic , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Metastasis/physiopathology , Pharmaceutical Preparations
6.
Int J Oncol ; 50(5): 1879-1888, 2017 May.
Article in English | MEDLINE | ID: mdl-28393180

ABSTRACT

Lymph node metastasis of breast cancer is a clinical marker of poor prognosis. Yet, there exist no therapies targeting mechanisms of intravasation into lymphatics. Herein we report on an effect of the antidyslipidemic drug fenofibrate with vasoprotective activity, which attenuates breast cancer intravasation in vitro, and describe the potential mechanisms. To measure intravasation in a 3-dimensional co-culture model MDA-MB231 and MCF-7 breast cancer spheroids were placed on immortalised lymphendothelial cell (LEC) monolayers. This provokes the formation of circular chemorepellent induced defects (CCIDs) in the LEC barrier resembling entry ports for the intravasating tumour. Furthermore, the expression of adhesion molecules ICAM-1, CD31 and FAK was investigated in LECs by western blotting as well as cell-cell adhesion and NF-κB activity by respective assays. In MDA-MB231 cells the activity of CYP1A1 was measured by EROD assay. Fenofibrate inhibited CCID formation in the MDA-MB231/LEC- and MCF-7/LEC models and the activity of NF-κB, which in turn downregulated ICAM-1 in LECs and the adhesion of cancer cells to LECs. Furthermore, CD31 and the activity of FAK were inhibited. In MDA-MB231 cells, fenofibrate attenuated CYP1A1 activity. Combinations with other FDA-approved drugs, which reportedly inhibit different ion channels, attenuated CCID formation additively or synergistically. In summary, fenofibrate inhibited NF-κB and ICAM-1, and inactivated FAK, thereby attenuating tumour intravasation in vitro. A combination with other FDA-approved drugs further improved this effect. Our new concept may lead to a novel therapy for cancer patients.


Subject(s)
Breast Neoplasms/drug therapy , Coculture Techniques , Fenofibrate/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cytochrome P-450 CYP1A1/genetics , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Humans , Intercellular Adhesion Molecule-1/genetics , Lymphatic Metastasis , MCF-7 Cells , NF-kappa B/genetics , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Signal Transduction/drug effects
7.
Cell Mol Life Sci ; 74(10): 1907-1921, 2017 05.
Article in English | MEDLINE | ID: mdl-28013338

ABSTRACT

Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological- or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca2+-calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour-stroma interaction.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Cancer-Associated Fibroblasts/pathology , Colon/pathology , Colorectal Neoplasms/pathology , Rectum/pathology , Signal Transduction , Calcium/metabolism , Cancer-Associated Fibroblasts/metabolism , Cardiac Myosins/metabolism , Cell Line, Tumor , Cell Movement , Colon/metabolism , Colorectal Neoplasms/metabolism , Humans , Myosin Light Chains/metabolism , Neoplasm Invasiveness/pathology , Rectum/metabolism , rho-Associated Kinases/metabolism
8.
Oncol Rep ; 36(5): 3065-3071, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27666412

ABSTRACT

Since cancer cells, when grown as spheroids, display drug sensitivity and radiation resistance patterns such as seen in vivo we recently established a three­dimensional (3D) in vitro model recapitulating colorectal cancer (CRC)-triggered lymphatic endothelial cell (LEC)­barrier breaching to study mechanisms of intra­/extravasation. CRC metastasizes not only through lymphatics but also through blood vessels and here we extend the 3D model to the interaction of blood endothelial cells (BECs) with naïve and 5­fluorouracil (5­FU)­resistant CRC CCL227 cells. The 3D model enabled quantifying effects of tumour­derived microRNA200 (miR200) miR200a, miR200b, miR200c, miR141 and miR429 regarding the induction of so-called 'circular chemorepellent­induced defects' (CCIDs) within the BEC­barrier, which resemble gates for tumour transmigration. For this, miR200 precursors were individually transfected and furthermore, the modulation of ZEB family expression was analysed by western blotting. miR200c, miR141 and miR429, which are contained in exosomes from naïve CCL227 cells, downregulated the expression of ZEB2, SNAI and TWIST in BECs. The exosomes of 5­FU­resistant CCL227­RH cells, which are devoid of miR200, accelerated CCID formation in BEC monolayers as compared to exosomes from naïve CCL227 cells. This confirmed the reported role of ZEB2 and SNAI in CRC metastasis and highlighted the active contribution of the stroma in the metastatic process. CCL227 spheroids affected the integrity of BEC and LEC barriers alike, which was in agreement with the observation that CRC metastasizes via blood stream (into the liver) as well as via lymphatics (into lymph nodes and lungs). This further validated the CRC/LEC and CRC/BEC in vitro model to study mechanisms of CRC spreading through vascular systems. Treatment of CCL227­RH cells with the HDAC inhibitors mocetinostat and sulforaphane reduced CCID formation to the level triggered by naïve CCL227 spheroids, however, without significantly influencing miR200 expression in CCL227-RH cells.


Subject(s)
Colorectal Neoplasms/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , MicroRNAs/genetics , Benzamides/administration & dosage , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Colorectal Neoplasms/genetics , Endothelium, Vascular/metabolism , Exosomes/genetics , Exosomes/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Isothiocyanates/administration & dosage , Lymphatic Metastasis , Lymphatic Vessels/pathology , NF-kappa B/metabolism , Pyrimidines/administration & dosage , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Sulfoxides
9.
Cancer Lett ; 380(1): 174-83, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27390016

ABSTRACT

Secretion of 12(S)-HETE by breast cancer emboli provokes "circular chemorepellent induced defects" (CCIDs) in the adjacent lymphatic vasculature facilitating their intravasation and lymph node metastasis which determines prognosis. Therefore, elucidating the mechanism of lymph endothelial cell (LEC) wall disintegration may provide cues for anti-metastatic intervention. The role of intracellular free Ca(2+) for CCID formation was investigated in LECs using MCF-7 or MDA-MB231 breast cancer cell spheroids in a three-dimensional cell co-culture model. 12(S)-HETE elevated the Ca(2+) level in LEC by activating PLC/IP3. Downstream, the Ca(2+)-calmodulin kinase MYLK contributed to the phosphorylation of Ser19-MLC2, LEC contraction and CCID formation. Approved clinical drugs, lidoflazine, ketotifen, epiandrosterone and cyclosporine, which reportedly disturb cellular calcium supply, inhibited 12(S)-HETE-induced Ca(2+) increase, Ser19-MLC2 phosphorylation and CCID formation. This treatment strategy may reduce spreading of breast cancer through lymphatics.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Breast Neoplasms/pathology , Calcium Signaling/drug effects , Calcium/metabolism , Cell Movement , Endothelial Cells/drug effects , Lymphatic Vessels/drug effects , Breast Neoplasms/metabolism , Calcium Channel Blockers/pharmacology , Calcium Chelating Agents/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cardiac Myosins/metabolism , Coculture Techniques , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Female , Humans , Inositol 1,4,5-Trisphosphate/metabolism , Lymphatic Metastasis , Lymphatic Vessels/metabolism , MCF-7 Cells , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/genetics , Myosin-Light-Chain Kinase/metabolism , Permeability , Phosphorylation , RNA Interference , Serine , Spheroids, Cellular , Time Factors , Transfection , Type C Phospholipases/metabolism
10.
Oncotarget ; 6(36): 39262-75, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26513020

ABSTRACT

RELA, RELB, CREL, NFKB1 and NFKB2, and the upstream regulators NEMO and NIK were knocked-down in lymph endothelial cells (LECs) and in MDA-MB231 breast cancer spheroids to study the contribution of NF-κB in vascular barrier breaching. Suppression of RELA, NFKB1 and NEMO inhibited "circular chemo-repellent induced defects" (CCIDs), which form when cancer cells cross the lymphatic vasculature, by ~20-30%. Suppression of RELB, NFKB2 and NIK inhibited CCIDs by only ~10-15%. In MDA-MB231 cells RELA and NFKB1 constituted MMP1 expression, which caused the activation of PAR1 in adjacent LECs. The knock-down of MMP1 in MDA-MB231 spheroids and pharmacological inhibition of PAR1 in LECs inhibited CCID formation by ~30%. Intracellular Ca(2+) release in LECs, which was induced by recombinant MMP1, was suppressed by the PAR1 inhibitor SCH79797, thereby confirming a functional intercellular axis: RELA/NFKB1 - MMP1 (MDA-MB231) - PAR1 (LEC). Recombinant MMP1 induced PAR1-dependent phosphorylation of MLC2 and FAK in LECs, which is indicative for their activity and for directional cell migration such as observed during CCID formation. The combined knock-down of the NF-κB pathways in LECs and MDA-MB231 spheroids inhibited CCIDs significantly stronger than knock-down in either cell type alone. Also the knock-down of ICAM-1 in LECs (a NF-κB endpoint with relevance for CCID formation) and knock-down of MMP1 in MDA-MB231 augmented CCID inhibition. This evidences that in both cell types NF-κB significantly and independently contributes to tumour-mediated breaching of the lymphatic barrier. Hence, inflamed tumour tissue and/or vasculature pose an additional threat to cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Endothelial Cells/metabolism , Matrix Metalloproteinase 1/biosynthesis , NF-kappa B/metabolism , Receptor, PAR-1/metabolism , Arabidopsis Proteins , Basic Helix-Loop-Helix Transcription Factors , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/physiology , Female , Humans , MCF-7 Cells , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Paracrine Communication , Receptor, PAR-1/genetics , Spheroids, Cellular , Transfection
11.
Mutat Res ; 777: 79-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25989051

ABSTRACT

Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC50 = 8.9 µM after 72 h) and 10 µM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 µM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 µM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.


Subject(s)
Apoptosis/drug effects , Asteraceae/chemistry , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Sesquiterpenes, Eudesmane/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle/drug effects , HL-60 Cells , Humans , Inhibitory Concentration 50 , Male , Rats , Rats, Sprague-Dawley , Saponins/pharmacology , Spirostans/pharmacology
12.
Hum Mol Genet ; 24(13): 3689-98, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25832648

ABSTRACT

Invasive colorectal cancer is associated with poor prognosis requiring treatment with systemic chemotherapies usually including 5-fluorouracil. A consequence of prolonged treatment is the acquisition of resistance eventually resulting in the recurrence of highly metastatic cancer cells. To address the relationship between drug resistance and increased lymphatic metastatic potential, we used a 3D co-culture model of colon tumour cell spheroids of parent CCL227 cells and subclones with gradually increasing resistance against 5-fluorouracil. From each investigated cell line, homogeneous tumour spheroids were generated in the presence of methylcellulose yielding emboli of ∼700 µm diameter. When invasive, tumour spheroids disrupt the continuous lymphendothelial cell (LEC) layer and generate a 'circular chemorepellent-induced defect' (CCID), reminiscent of the entry gates through which tumour emboli intravasate lymphatic vasculature. Here we provide evidence that increasingly chemoresistant colon cancer spheroids were strongly associated with enhanced intravasative properties. In naïve CCL227 spheroids, miR-200 family members were released into exosomes thereby repressing the epithelial to mesenchymal transition-regulating transcription factors ZEB1 and SLUG in LEC. As a consequence of attenuated plasticity and migration of LEC, CCID formation was impaired. Loss of exosomal transferred miR-200c in resistant colon cells rendered LEC more susceptible to pro-migratory signals that were generated and directly transmitted by colon cancer spheroids. This observation indicates a common molecular axis in colon cancer and LEC where miR-200 family members act as regulators of ZEB proteins. The data support the notion that horizontal miR-200 signalling prevents the permeation of cells into adjacent epithelia and contributes to organ integrity.


Subject(s)
Colonic Neoplasms/metabolism , Endothelial Cells/metabolism , Fluorouracil/pharmacology , MicroRNAs/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Drug Resistance, Neoplasm , Endothelial Cells/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lymphatic Metastasis , MicroRNAs/genetics , Multigene Family , Neoplasm Invasiveness , Snail Family Transcription Factors , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
SELECTION OF CITATIONS
SEARCH DETAIL
...