Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Seizure ; 116: 74-80, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37574425

ABSTRACT

BACKGROUND: Adequate glucose supply is essential for brain function, therefore hypoglycemic states may lead to seizures. Since blood glucose supply for brain is buffered by liver glycogen, an impairment of liver glycogen synthesis by mutations in the liver glycogen synthase gene (GYS2) might result in a substantial neurological involvement. Here, we describe the phenotypes of affected siblings of two families harboring biallelic mutations in GYS2. METHODS: Two suspected families - a multiplex Pakistani family (family A) with three affected siblings and a family of Moroccan origin (family B) with a single affected child who presented with seizures and reduced fasting blood glucose levels were genetically characterized. Whole exome sequencing (WES) was performed on the index patients, followed by Sanger sequencing-based segregation analyses on all available members of both families. RESULTS: The variant prioritization of WES and later Sanger sequencing confirmed three mutations in the GYS2 gene (12p12.1) consistent with an autosomal recessive pattern of inheritance. A homozygous splice acceptor site variant (NM_021957.3, c. 1646 -2A>G) segregated in family A. Two novel compound heterozygous variants (NM_021957.3: c.343G>A; p.Val115Met and NM_021957.3: c.875A>T; p.Glu292Val) were detected in family B, suggesting glycogen storage disorder. A special diet designed to avoid hypoglycemia, in addition to change of the anti-seizure medication led to reduction in seizure frequency. CONCLUSIONS: This study suggests that the seizures in patients initially diagnosed with epilepsy might be directly caused, or influenced by hypoglycemia due to pathogenic variants in the GYS2 gene.


Subject(s)
Blood Glucose , Hypoglycemia , Child , Humans , Exome Sequencing , Liver Glycogen , Mutation/genetics
2.
J Neuromuscul Dis ; 8(2): 209-216, 2021.
Article in English | MEDLINE | ID: mdl-33427694

ABSTRACT

BACKGROUND: Recently gene therapy with onasemnogene abeparvovec has been approved for the treatment of spinal muscular atrophy (SMA). As the experience from clinical trials is limited, there are still uncertainties for which patient population the treatment can be considered safe and effective. METHODS: We report our experience with eight consecutive patients with SMA who were treated with the standard dose of onasemnogene abeparvovec (1.1×1014 vg/kg) at the University Hospital Bonn, Germany. All patients received prophylactic immunosuppression with 1 mg/kg/d prednisolone for four weeks starting on the day before gene therapy. RESULTS: We treated eight patients (4 male, 4 female, age range 10-37 months) with a body weight between 7.1 and 11.9 kg. All patients had 2 or 3 copies of the SMN2-gene and were previously treated with nusinersen. Following treatment with onasemnogene abeparvovec all patients showed a temporary increase of the body temperature and an increase of transaminase levels. In all but one patient it was necessary to increase or prolong the standard steroid dose to control the immune response. In one severe case, liver damage was associated with impaired liver function. This patient received a steroid pulse therapy for five days. Blood counts revealed asymptomatic thrombocytopenia (<150×109/L) in 6/8 patients and a significant increase of monocytes following gene therapy. Liver values and blood counts returned to almost normal levels during the post-treatment observation period. Troponin I increased above normal limit in 4/8 patients but was not associated with any abnormalities on cardiac evaluation. CONCLUSIONS: In a broader spectrum of patients, treatment with onasemnogene abeparvovec was associated with a higher rate of adverse events. In our cases it was possible to control the immune response by close monitoring and adaptation of the immunosuppressive regimen. Further research is needed to better understand the immune response following gene therapy and ideally to identify patients at risk for a more severe reaction.


Subject(s)
Biological Products/therapeutic use , Genetic Therapy/methods , Recombinant Fusion Proteins/therapeutic use , Spinal Muscular Atrophies of Childhood/therapy , Child, Preschool , Female , Germany , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...