Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(21): 5161-7, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17880055

ABSTRACT

The B1 receptor is an attractive target for the treatment of pain and inflammation. A series of 3-carboxamido-5-phenacylamino pyrazole B1 receptor antagonists are described that exhibit good potency against B1 and high selectivity over B2. Initially, N-unsubstituted pyrazoles were studied, but these compounds suffered from extensive glucuronidation in primates. This difficulty could be surmounted by the use of N-substituted pyrazoles. Optimization efforts culminated in compound 41, which has high receptor potency and metabolic stability.


Subject(s)
Benzamides/chemical synthesis , Bradykinin B1 Receptor Antagonists , Pyrazoles/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacology , Crystallography, X-Ray , Fibroblasts/metabolism , Humans , In Vitro Techniques , Lung/cytology , Molecular Structure , Pyrazoles/chemistry , Pyrazoles/pharmacology , Radioligand Assay , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 322(2): 619-30, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17470643

ABSTRACT

The bradykinin B(1) receptor plays a critical role in chronic pain and inflammation, although efforts to demonstrate efficacy of receptor antagonists have been hampered by species-dependent potency differences, metabolic instability, and low oral exposure of current agents. The pharmacology, pharmacokinetics, and analgesic efficacy of the novel benzamide B(1) receptor antagonist 7-chloro-2-[3-(9-pyridin-4-yl-3,9-diazaspiro[5.5]undecanecarbonyl)phenyl]-2,3-dihydro-isoindol-1-one (ELN441958) is described. ELN441958 competitively inhibited the binding of the B(1) agonist ligand [(3)H]desArg(10)-kallidin ([(3)H]DAKD) to IMR-90 human fibroblast membranes with high affinity (K(i) = 0.26 +/- 0.02 nM). ELN441958 potently antagonized DAKD (but not bradykinin)-induced calcium mobilization in IMR-90 cells, indicating that it is highly selective for B(1) over B(2) receptors. Antagonism of agonist-induced calcium responses at B(1) receptors from different species indicated that ELN441958 is selective for primate over rodent B(1) receptors with a rank order potency (K(B), nanomolar) of human (0.12 +/- 0.02) approximately rhesus monkey (0.24 +/- 0.01) > rat (1.5 +/- 0.4) > mouse (14 +/- 4). ELN441958 had good permeability and metabolic stability in vitro consistent with high oral exposure and moderate plasma half-lives in rats and rhesus monkeys. Because ELN441958 is up to 120-fold more potent at primate than at rodent B(1) receptors, it was evaluated in a primate pain model. ELN441958 dose-dependently reduced carrageenan-induced thermal hyperalgesia in a rhesus monkey tail-withdrawal model, with an ED(50) approximately 3 mg/kg s.c. Naltrexone had no effect on the antihyperalgesia produced by ELN441958, indicating a lack of involvement of opioid receptors. ELN441958 is a novel small molecule bradykinin B(1) receptor antagonist exhibiting high oral bioavailability and potent systemic efficacy in rhesus monkey inflammatory pain.


Subject(s)
Analgesics/pharmacology , Bradykinin B1 Receptor Antagonists , Spiro Compounds/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Analgesics/chemistry , Analgesics/pharmacokinetics , Animals , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Calcium/metabolism , Carrageenan/toxicity , Cell Line , Cell Membrane Permeability , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Kallidin/analogs & derivatives , Kallidin/metabolism , Kallidin/pharmacology , Macaca mulatta , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Molecular Structure , Naltrexone/pharmacology , Naproxen/pharmacology , Naproxen/therapeutic use , Narcotic Antagonists , Rats , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B1/metabolism , Species Specificity , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...