Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4423, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28667251

ABSTRACT

How boundaries surrounding recrystallization grains migrate through the 3D network of dislocation boundaries in deformed crystalline materials is unknown and critical for the resulting recrystallized crystalline materials. Using X-ray Laue diffraction microscopy, we show for the first time the migration pattern of a typical recrystallization boundary through a well-characterized deformation matrix. The data provide a unique possibility to investigate effects of both boundary misorientation and plane normal on the migration, information which cannot be accessed with any other techniques. The results show that neither of these two parameters can explain the observed migration behavior. Instead we suggest that the subdivision of the deformed microstructure ahead of the boundary plays the dominant role. The present experimental observations challenge the assumptions of existing recrystallization theories, and set the stage for determination of mobilities of recrystallization boundaries.

2.
J Microsc ; 260(1): 73-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26138919

ABSTRACT

The effects of using a traction-free (plane-stress) assumption to obtain the full distortion tensor from high-resolution EBSD measurements are analyzed. Equations are derived which bound the traction-free error arising from angular misorientation of the sample surface; the error in recovered distortion is shown to be quadratic with respect to that misorientation, and the maximum 'safe' angular misorientation is shown to be 2.7 degrees. The effects of localized stress fields on the traction-free assumption are then examined by a numerical case study, which uses the Boussinesq formalism to model stress fields near a free surface. Except in cases where localized stress field sources occur very close to sample points, the traction-free assumption appears to be admirably robust.

SELECTION OF CITATIONS
SEARCH DETAIL
...