Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826260

ABSTRACT

Prestin's voltage-driven motor activity confers sound-elicited somatic electromotility in auditory outer hair cells (OHCs) and is essential for the exquisite sensitivity and frequency selectivity of mammalian hearing. Lack of prestin results in hearing threshold shifts across frequency, supporting the causal association of variants in the prestin-coding gene, SLC26A5 , with human hearing loss, DFNB61. However, cochlear function can tolerate reductions in prestin-mediated OHC electromotility. We found that two deafness-associated prestin variants, p.A100T and p.P119S, do not deprive prestin of its fast motor function but significantly reduce membrane expression, leading to large reductions in OHC electromotility that were only ∼30% of wildtype (WT). Mice harboring these missense variants suffered congenital hearing loss that was worse at high frequencies; however, they retained WT-like auditory brainstem response thresholds at 8 kHz, which is processed at the apex of the mouse cochlea. This observation suggests the increasing importance of prestin-driven cochlear amplification at higher frequencies relevant to mammalian hearing. The observation also suggests the promising clinical possibility that small enhancements of OHC electromotility could significantly ameliorate DFNB61 hearing loss in human patients. SIGNIFICANCE: Prestin is abundantly expressed in the auditory outer hair cells and is essential for normal cochlear operation. Hence, reduction of prestin expression is often taken as indicative of reduced cochlear function in diseased or aged ears. However, this assumption overlooks the fact that cochlear function can tolerate large reductions in prestin motor activity. DFNB61 mouse models generated and characterized in this study provide an opportunity to gauge the amount of prestin motor activity needed to sustain normal hearing sensitivity. This knowledge is crucial not only for understanding the pathogenic roles of deafness-associated variants that impair OHC electromotility but also for unraveling how prestin contributes to cochlear amplification.

2.
J Biol Chem ; 300(5): 107261, 2024 May.
Article in English | MEDLINE | ID: mdl-38582450

ABSTRACT

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Subject(s)
Antiporters , Sulfate Transporters , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Humans , Antiporters/metabolism , Antiporters/genetics , Antiporters/chemistry , Anion Transport Proteins/metabolism , Anion Transport Proteins/chemistry , Anion Transport Proteins/genetics , Binding Sites , Mutation, Missense , HEK293 Cells , Protein Domains , Hydrogen Bonding
3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474007

ABSTRACT

Pendrin and prestin are evolutionary-conserved membrane proteins that are essential for normal hearing. Dysfunction of these proteins results in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here, we report results from our ongoing efforts to experimentally characterize pendrin and prestin variants using in vitro functional assays. With previously established fluorometric anion transport assays, we determined that many of the pendrin variants identified on transmembrane (TM) 10, which contains the essential anion binding site, and on the neighboring TM9 within the core domain resulted in impaired anion transport activity. We also determined the range of functional impairment in three deafness-associated prestin variants by measuring nonlinear capacitance (NLC), a proxy for motor function. Using the results from our functional analyses, we also evaluated the performance of AlphaMissense (AM), a computational tool for predicting the pathogenicity of missense variants. AM prediction scores correlated well with our experimental results; however, some variants were misclassified, underscoring the necessity of experimentally assessing the effects of variants. Together, our experimental efforts provide invaluable information regarding the pathogenicity of deafness-associated pendrin and prestin variants.


Subject(s)
Deafness , Mutation, Missense , Humans , Sulfate Transporters , Proteins/metabolism , Anions/metabolism
4.
J Physiol ; 602(6): 1199-1210, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38431907

ABSTRACT

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.


Subject(s)
Deafness , Hearing Loss , Animals , Humans , Mice , Hair Cells, Auditory, Outer/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Mutation , Proteins/genetics
5.
bioRxiv ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38328051

ABSTRACT

Pendrin and prestin are evolutionary conserved membrane proteins that are essential for normal hearing. Pendrin is an anion transporter required for normal development and maintenance of ion homeostasis in the inner ear, while prestin is a voltage-dependent motor responsible for cochlear amplification essential for high sensitivity and frequency selectivity of mammalian hearing. Dysfunction of these proteins result in hearing loss in humans, and numerous deafness-associated pendrin and prestin variants have been identified in patients. However, the pathogenic impacts of many of these variants are ambiguous. Here we report results from our ongoing efforts in experimentally characterizing pendrin and prestin variants using in vitro functional assays, providing invaluable information regarding their pathogenicity.

6.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106153

ABSTRACT

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study we sought to identify the common vs. distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.

7.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662362

ABSTRACT

DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5 , the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes ( SLC26A5 W70X/R130S ). Our recent study showed that mice homozygous for p.R130S ( Slc26a5 R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5 R130S/- mice were used as a model for human SLC26A5 W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study fully defines the pathogenic roles for the p.R130S prestin, which points to the presence of a limited time window for potential clinical intervention.

8.
Dis Model Mech ; 16(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37139703

ABSTRACT

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.


Subject(s)
Hypokalemic Periodic Paralysis , Mice , Humans , Animals , Hypokalemic Periodic Paralysis/genetics , Hypokalemic Periodic Paralysis/metabolism , HEK293 Cells , Mutation/genetics , Ion Channel Gating , Cytosol/metabolism , NAV1.4 Voltage-Gated Sodium Channel/genetics , NAV1.4 Voltage-Gated Sodium Channel/metabolism
9.
Proc Natl Acad Sci U S A ; 120(11): e2217891120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893263

ABSTRACT

Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.


Subject(s)
Anion Transport Proteins , Proteins , Mice , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Proteins/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Mammals/metabolism , Anions/metabolism , Hair Cells, Auditory, Outer/metabolism , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism
11.
Nat Commun ; 13(1): 6208, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266333

ABSTRACT

Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.


Subject(s)
Anion Transport Proteins , Chlorides , Animals , Anion Transport Proteins/metabolism , Chlorides/metabolism , Cryoelectron Microscopy , Hair Cells, Auditory, Outer/metabolism , Anions/metabolism , Salicylates , Sulfates/metabolism , Mammals/metabolism
12.
Biomedicines ; 10(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36140355

ABSTRACT

Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.

13.
Nature ; 605(7909): 298-303, 2022 05.
Article in English | MEDLINE | ID: mdl-35508658

ABSTRACT

The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.


Subject(s)
Cell Differentiation , Hair Cells, Auditory, Inner , Hair Cells, Auditory, Outer , Animals , Cell Differentiation/genetics , Cochlea/cytology , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Outer/cytology , Mice , T-Box Domain Proteins
14.
Hear Res ; 423: 108376, 2022 09 15.
Article in English | MEDLINE | ID: mdl-34848118

ABSTRACT

Prestin (SLC26A5) is a membrane-based voltage-dependent motor protein responsible for outer hair cell (OHC) somatic electromotility. Its importance for mammalian cochlear amplification has been demonstrated using mouse models lacking prestin (prestin-KO) and expressing dysfunctional prestin, prestinV499G/Y501H (499-prestin-KI). However, it is still not elucidated how prestin contributes to the mechanical amplification process in the cochlea. In this study, we characterized several prestin mouse models in which prestin activity in OHCs was variously manipulated. We found that near-normal cochlear function can be maintained even when prestin activity is significantly reduced, suggesting that the relationship between OHC electromotility and the peripheral sensitivity to sound may not be linear. This result is counterintuitive given the large threshold shifts in prestin-KO and 499-prestin-KI mice, as reported in previous studies. To reconcile these apparently opposing observations, we entertain a voltage- and turgor pressure-based cochlear amplification mechanism that requires prestin but is insensitive to significant reductions in prestin protein expression. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.


Subject(s)
Hair Cells, Auditory, Outer , Molecular Motor Proteins , Animals , Cochlea/metabolism , Hair Cells, Auditory, Outer/metabolism , Hearing , Mammals/metabolism , Mice , Molecular Motor Proteins/metabolism , Motor Activity
15.
Dis Model Mech ; 14(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34622280

ABSTRACT

KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Cell Death , Deafness/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Humans , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism
16.
Sci Adv ; 7(4)2021 01.
Article in English | MEDLINE | ID: mdl-33523928

ABSTRACT

Hearing involves a stereotyped neural network communicating cochlea and brain. How this sensorineural circuit assembles is largely unknown. The cochlea houses two types of mechanosensory hair cells differing in function (sound transmission versus amplification) and location (inner versus outer compartments). Inner (IHCs) and outer hair cells (OHCs) are each innervated by a distinct pair of afferent and efferent neurons: IHCs are contacted by type I afferents receiving axodendritic efferent contacts; OHCs are contacted by type II afferents and axosomatically terminating efferents. Using an Insm1 mouse mutant with IHCs in the position of OHCs, we discover a hierarchical sequence of instructions in which first IHCs attract, and OHCs repel, type I afferents; second, type II afferents innervate hair cells not contacted by type I afferents; and last, afferent fiber type determines if and how efferents innervate, whether axodendritically on the afferent, axosomatically on the hair cell, or not at all.

17.
Tissue Eng Part A ; 27(3-4): 256-269, 2021 02.
Article in English | MEDLINE | ID: mdl-32580647

ABSTRACT

Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.


Subject(s)
Human Embryonic Stem Cells , Cell Differentiation , Humans , Neurons , Spheroids, Cellular , Spiral Ganglion , Stem Cell Transplantation
18.
PLoS Genet ; 16(4): e1008643, 2020 04.
Article in English | MEDLINE | ID: mdl-32294086

ABSTRACT

Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl- cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3'-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl- influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.


Subject(s)
Hearing Loss, Sensorineural/congenital , Hearing Loss, Sensorineural/genetics , Mutation , Protein Domains/genetics , Solute Carrier Family 12, Member 2/chemistry , Solute Carrier Family 12, Member 2/genetics , Amino Acid Sequence , Animals , Base Sequence , Chlorides/metabolism , Cochlea/metabolism , Cochlea/pathology , Deafness/congenital , Deafness/genetics , Exons/genetics , Female , Gene Expression , HEK293 Cells , Humans , Infant , Macaca fascicularis , Male , Pedigree , RNA Splicing , RNA, Messenger/analysis , RNA, Messenger/genetics , Solute Carrier Family 12, Member 2/metabolism
19.
Hum Mutat ; 41(1): 316-331, 2020 01.
Article in English | MEDLINE | ID: mdl-31599023

ABSTRACT

Thanks to the advent of rapid DNA sequencing technology and its prevalence, many disease-associated genetic variants are rapidly identified in many genes from patient samples. However, the subsequent effort to experimentally validate and define their pathological roles is extremely slow. Consequently, the pathogenicity of most disease-associated genetic variants is solely speculated in silico, which is no longer deemed compelling. We developed an experimental approach to efficiently quantify the pathogenic effects of disease-associated genetic variants with a focus on SLC26A4, which is essential for normal inner ear function. Alterations of this gene are associated with both syndromic and nonsyndromic hereditary hearing loss with various degrees of severity. We established HEK293T-based stable cell lines that express pendrin missense variants in a doxycycline-dependent manner, and systematically determined their anion transport activities with high accuracy in a 96-well plate format using a high throughput plate reader. Our doxycycline dosage-dependent transport assay objectively distinguishes missense variants that indeed impair the function of pendrin from those that do not (functional variants). We also found that some of these putative missense variants disrupt normal messenger RNA splicing. Our comprehensive experimental approach helps determine the pathogenicity of each pendrin variant, which should guide future efforts to benefit patients.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Sulfate Transporters/genetics , Cell Line , Chloride-Bicarbonate Antiporters/genetics , Chloride-Bicarbonate Antiporters/metabolism , Fluorescent Antibody Technique , Gene Expression , Genetic Association Studies/methods , Humans , Immunohistochemistry , Models, Molecular , Mutation, Missense , Protein Conformation , RNA Splicing , Structure-Activity Relationship , Sulfate Transporters/chemistry , Sulfate Transporters/metabolism
20.
Sci Rep ; 9(1): 6874, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31053797

ABSTRACT

Cochlear outer hair cells (OHC) express the motor protein, prestin, which is required for sensitivity and frequency selectivity. Because our previous work showed that a calmodulin binding site (CBS) was located in prestin's C-terminal, specifically within the intrinsically disordered region, we sought to delete the IDR to study the functional significance of calcium-dependent, calmodulin binding on OHC function. Although the construct lacking the IDR (∆IDR prestin) demonstrated wildtype-like nonlinear capacitance (NLC) in HEK293T cells, the phenotype in ∆IDR prestin knockins (KI) was similar to that in prestin knockouts: thresholds were elevated, NLC was absent and OHCs were missing from basal regions of the cochlea. Although ∆IDR prestin mRNA was measured, no prestin protein was detected. At the mRNA level, both of prestin's exons 17 and 18 were entirely removed, rather than the smaller region encoding the IDR. Our hybrid exon that contained the targeted deletion (17-18 ∆IDR) failed to splice in vitro and prestin protein lacking exons 17 and 18 aggregated and failed to target the cell membrane. Hence, the absence of prestin protein in ∆IDR KI OHCs may be due to the unexpected splicing of the hybrid 17-18 ∆IDR exon followed by rapid degradation of nonfunctional prestin protein.


Subject(s)
Exons/genetics , Sequence Deletion , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Animals , Female , Gene Knock-In Techniques , HEK293 Cells , Humans , Male , Mice , Protein Domains , Sulfate Transporters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...