Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(25): 255001, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38996250

ABSTRACT

An essential component for quantum-enhanced measurements with free electrons is an electron resonator. We report stable guiding of free electrons at 50 eV energy for up to seven round trips in a linear autoponderomotive guiding structure, which is realized with two microstructured printed circuit boards that generate the required electromagnetic fields. Free electrons are laser triggered from a sharp tungsten needle tip and coupled in at the front of the electron resonator with the help of sub-nanosecond-fast switchable electron mirrors. After a variable time delay, we open the rear electron mirror and measure the number of trapped electrons with a delay-line detector. We demonstrate, simulate, and show ways of optimizing an electron resonator in simulations, which will help enable "interaction-free" measurement setups, including multipass and quantum-Zeno effect based schemes, helping to realize the quantum electron microscope.

2.
Phys Rev Lett ; 128(23): 235301, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749196

ABSTRACT

The last two decades experimentally affirmed the quantum nature of free electron wave packets by the rapid development of transmission electron microscopes into ultrafast, quantum-coherent systems. So far, all experiments were restricted to the bounds of transmission electron microscopes enabling one or two photon-electron interaction sites. We show the quantum coherent coupling between electrons and light in a scanning electron microscope, at unprecedentedly low, subrelativistic energies down to 10.4 keV. These microscopes not only afford the yet-unexplored energies from ∼0.5 to 30 keV providing the optimum electron-light coupling efficiency, but also offer spacious and easily configurable experimental chambers for extended, cascaded optical set ups, potentially boasting thousands of photon-electron interaction sites. Our results make possible experiments in electron wave packet shaping, quantum computing, and spectral imaging with low-energy electrons.

3.
Nature ; 597(7877): 498-502, 2021 09.
Article in English | MEDLINE | ID: mdl-34552256

ABSTRACT

Particle accelerators are essential tools in science, hospitals and industry1-6. Yet their costs and large footprint, ranging in length from metres to several kilometres, limit their use. The recently demonstrated nanophotonics-based acceleration of charged particles can reduce the cost and size of these accelerators by orders of magnitude7-9. In this approach, a carefully designed nanostructure transfers energy from laser light to the particles in a phase-synchronous manner, accelerating them. To accelerate particles to the megaelectronvolt range and beyond, with minimal particle loss10,11, the particle beam needs to be confined over extended distances, but the necessary control of the electron beam's phase space has been elusive. Here we demonstrate complex electron phase-space control at optical frequencies in the 225-nanometre narrow channel of a silicon-based photonic nanostructure that is 77.7 micrometres long. In particular, we experimentally show alternating phase focusing10-13, a particle propagation scheme for minimal-loss transport that could, in principle, be arbitrarily long. We expect this work to enable megaelectronvolt electron-beam generation on a photonic chip, with potential for applications in radiotherapy and compact light sources9, and other forms of electron phase-space control resulting in narrow energy or zeptosecond-bunched beams14-16.

4.
Opt Express ; 29(10): 14403-14411, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985164

ABSTRACT

In dielectric laser acceleration, nanostructures etched into silicon are used to convert free-space ultrashort laser pulses, incident from the side and parallel to the wafer substrate, to accelerate particles. This current approach is experimentally challenging and, as it turns out, not quite necessary for most experiments and practical applications. Here, we experimentally demonstrate and numerically verify the efficacy of top-illuminated structures, and measure a maximum acceleration gradient of 49.2 ± 3.1 MeV/m. We discuss how, in practice, this approach proves superior to the current standard in the field, and expect it to become the definitive choice for nanophotonic particle laser acceleration.

5.
Phys Rev Lett ; 123(14): 146802, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702221

ABSTRACT

We present femtosecond laser-induced electron emission from nanodiamond-coated tungsten tips. Based on the shortness of the femtosecond laser pulses, electrons can be photoexcited for wavelengths from the infrared (1932 nm) to the ultraviolet (235 nm) because multiphoton excitation becomes efficient over the entire spectral range. Depending on the laser wavelength, we find different dominant emission channels identified by the number of photons needed to emit electrons. Based on the band alignment between tungsten and nanodiamond, the relevant emission channels can be identified as specific transitions in diamond and its graphitic boundaries. It is the combination of the character of initial and final states (i.e., bulk or surface-near, direct or indirect excitation in the diamond band structure), the number of photons providing the excitation energy, and the peak intensity of the laser pulses that determines the dominant excitation channel for photoemission. A specific feature of the hydrogen-terminated nanodiamond coating is its negative electron affinity that significantly lowers the work function and enables efficient emission from the conduction band minimum into vacuum without an energy barrier. Emission is stable for bunch charges of up to 400 electrons per laser pulse. We infer a normalized emittance of <0.20 nm rad and a normalized peak brightness of >1.2×10^{12} A m^{-2} sr^{-1}. The properties of these tips are encouraging for their use as laser-triggered electron sources in applications such as ultrafast electron microscopy as well as diffraction and novel photonics-based laser accelerators.

6.
Phys Rev Lett ; 120(10): 103203, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29570333

ABSTRACT

Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

7.
Opt Express ; 25(16): 19195-19204, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041113

ABSTRACT

We report on a theoretical and experimental study of the energy transfer between an optical evanescent wave, propagating in vacuum along the planar boundary of a dielectric material, and a beam of sub-relativistic electrons. The evanescent wave is excited via total internal reflection in the dielectric by an infrared (λ = 2 µm) femtosecond laser pulse. By matching the electron propagation velocity to the phase velocity of the evanescent wave, energy modulation of the electron beam is achieved. A maximum energy gain of 800 eV is observed, corresponding to the absorption of more than 1000 photons by one electron. The maximum observed acceleration gradient is 19 ± 2 MeV/m. The striking advantage of this scheme is that a structuring of the acceleration element's surface is not required, enabling the use of materials with high laser damage thresholds that are difficult to nano-structure, such as SiC, Al2O3 or CaF2.

8.
Nat Commun ; 8: 14342, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120930

ABSTRACT

The temporal resolution of ultrafast electron diffraction and microscopy experiments is currently limited by the available experimental techniques for the generation and characterization of electron bunches with single femtosecond or attosecond durations. Here, we present proof of principle experiments of an optical gating concept for free electrons via direct time-domain visualization of the sub-optical cycle energy and transverse momentum structure imprinted on the electron beam. We demonstrate a temporal resolution of 1.2±0.3 fs. The scheme is based on the synchronous interaction between electrons and the near-field mode of a dielectric nano-grating excited by a femtosecond laser pulse with an optical period duration of 6.5 fs. The sub-optical cycle resolution demonstrated here is promising for use in laser-driven streak cameras for attosecond temporal characterization of bunched particle beams as well as time-resolved experiments with free-electron beams.

9.
Rep Prog Phys ; 80(5): 054401, 2017 05.
Article in English | MEDLINE | ID: mdl-28059773

ABSTRACT

Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond = 1 as = 10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.

10.
Nat Commun ; 7: 11717, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241851

ABSTRACT

The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.

11.
Ultramicroscopy ; 164: 31-45, 2016 May.
Article in English | MEDLINE | ID: mdl-26998703

ABSTRACT

One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope.

12.
Phys Rev Lett ; 106(19): 193001, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668147

ABSTRACT

We demonstrate the transverse confinement and guiding of a low energy electron beam of several electron volts in a miniaturized linear quadrupole guide. The guiding potential is generated by applying a microwave voltage to electrodes fabricated on a planar substrate, which allows the potential landscape to be precisely shaped on a microscopic scale. We realize transverse trapping frequencies of 100 MHz and guide electrons along a circular section of 37 mm length. A detailed characterization of the guiding properties in terms of potential depth and dynamic stability is given. This new technique of electron guiding promises various applications in guided matter-wave experiments such as electron interferometry.

13.
Nature ; 413(6855): 498-501, 2001 Oct 04.
Article in English | MEDLINE | ID: mdl-11586353

ABSTRACT

Although Bose-Einstein condensates of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique that enables faster production of Bose-Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip. We achieve Bose-Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700 ms-more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an 'atomic conveyor belt', which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing.

14.
Phys Rev Lett ; 86(4): 608-11, 2001 Jan 22.
Article in English | MEDLINE | ID: mdl-11177893

ABSTRACT

We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...