Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthet Dent ; 103(1): 23-30, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20105678

ABSTRACT

STATEMENT OF PROBLEM: A new elastomeric impression material has been formulated with a ring-opening metathesis chemistry. In addition to other properties of clinical significance, the impression accuracy must be confirmed. PURPOSE: The purpose of this study was to compare the accuracy of the new elastomeric impression material with vinyl polysiloxane and polyether following both spray and immersion disinfection. MATERIAL AND METHODS: Impressions of a modified dentoform with a stainless steel crown preparation in the lower right quadrant were made, and type IV gypsum working casts and dies were formed. Anteroposterior (AP), cross-arch (CA), buccolingual (BL), mesiodistal (MD), occlusogingivobuccal (OGB), and occlusogingivolingual (OGL) dimensions were measured using a microscope. Working cast and die dimensions were compared to those of the master model. The impression materials were a newly formulated, ring-opening metathesis-polymerization impression material (ROMP Cartridge Tray and ROMP Volume Wash), vinyl polysiloxane (VPS, Aquasil Ultra Monophase/LV), and a polyether (PE, Impregum Penta Soft/Permadyne Garant L). Fifteen impressions with each material were made, of which 5 were disinfected by spray for 10 minutes (CaviCide), 5 were disinfected by immersion for 90 minutes (ProCide D), and 5 were not disinfected. There were significant cross-product interactions with a 2-way ANOVA, so a 1-way ANOVA and Dunnett's T3 multiple comparison test were used to compare the dimensional changes of the 3 impression materials, by disinfection status and for each location (alpha=.05). RESULTS: For ROMP, there were no significant differences from the master, for any dimension, when comparing the control and 2 disinfectant conditions. No significant differences were detected among the 3 impression materials for CA, BL, and MD. The working die dimensions of OGB and OGL for VPS with immersion disinfection were significantly shorter than with PE and ROMP (P<.05). Overall, the AP dimension was more accurate than CA, and the BL of working dies was 0.040 mm greater in diameter than MD. CONCLUSIONS: The accuracy of gypsum working casts and working dies from the new and 2 existing types of impression material were similar, for both spray and immersion disinfection. Judicious application of a die spacer can compensate for the small differences observed. VPS may require additional laboratory accommodation to compensate for a shorter working die.


Subject(s)
Dental Disinfectants/chemistry , Dental Impression Materials/chemistry , Dental Prosthesis Design/instrumentation , Elastomers/chemistry , Aerosols , Analysis of Variance , Dental Disinfectants/administration & dosage , Disinfection/methods , Humans , Immersion , Polyvinyls/chemistry , Reproducibility of Results , Resins, Synthetic/chemistry , Siloxanes/chemistry
2.
Analyst ; 130(5): 694-700, 2005 May.
Article in English | MEDLINE | ID: mdl-15852139

ABSTRACT

Catechins (catechin and other derivatives) are naturally occurring flavonoids present in a number of plants and foods. They are also part of numerous nutraceutical formulations because they are believed to have antioxidant, cancer chemo-preventative, anti-inflammatory and antimicrobial properties. The determination of catechins has traditionally been performed by HPLC. However, this methodology is both time and sample intensive and generates large amounts of organic solvent waste. In the current report, an application of MEKC using a PDMS microchip is presented for the analysis of catechins. The system uses pulsed amperometric detection for direct analysis of important naturally occurring catechins. The effect of pH, surfactant concentration, detection potential and signal stability were analyzed. Linear relationships were found between the concentration and peak current, with good stability and limits of detection of 8 [micro sign]M for catechin, epigallocatechin gallate and epicatechin, and 14 [micro sign]M for epicatechin gallate. Optimum conditions were applied to the detection of selected catechins in a commercially available green tea extract nutraceutical and the results were compared to HPLC analysis. The analysis using microchip micellar electrokinetic chromatography and pulsed amperometric detection was completed in 4.5 min, 10 times faster than the HPLC analysis.


Subject(s)
Catechin/analysis , Microchip Analytical Procedures/methods , Chromatography, Micellar Electrokinetic Capillary/methods , Electrochemistry/methods , Plant Extracts/chemistry , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...