Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983497

ABSTRACT

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclins/metabolism , Cell Cycle/genetics , Enzyme Inhibitors
2.
J Mol Diagn ; 23(5): 612-629, 2021 05.
Article in English | MEDLINE | ID: mdl-33621668

ABSTRACT

The relevance of large copy number variants (CNVs) to hereditary disorders has been long recognized, and population sequencing efforts have chronicled many common structural variants (SVs). However, limited data are available on the clinical contribution of rare germline SVs. Here, a detailed characterization of SVs identified using targeted next-generation sequencing was performed. Across 50 genes associated with hereditary cancer and cardiovascular disorders, a minimum of 828 unique SVs were reported, including 584 fully characterized SVs. Almost 40% of CNVs were <5 kb, with one in three deletions impacting a single exon. Additionally, 36 mid-range deletions/duplications (50 to 250 bp), 21 mobile element insertions, 6 inversions, and 27 complex rearrangements were detected. This data set was used to model SV detection in a bioinformatics pipeline solely relying on read depth, which revealed that genome sequencing (30×) allows detection of 71%, a 500× panel only targeting coding regions 53%, and exome sequencing (100×) <20% of characterized SVs. SVs accounted for 14.1% of all unique pathogenic variants, supporting the importance of SVs in hereditary disorders. Robust SV detection requires an ensemble of variant-calling algorithms that utilize sequencing of intronic regions. These algorithms should use distinct data features representative of each class of mutational mechanism, including recombination between two sequences sharing high similarity, covariants inserted between CNV breakpoints, and complex rearrangements containing inverted sequences.


Subject(s)
Chromosome Breakage , Chromosomes, Human/genetics , Disease/genetics , Genome, Human , Germ-Line Mutation , High-Throughput Nucleotide Sequencing/methods , Introns , Algorithms , Humans
3.
Insect Biochem Mol Biol ; 120: 103334, 2020 05.
Article in English | MEDLINE | ID: mdl-32109587

ABSTRACT

The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range.


Subject(s)
Adaptation, Biological , Aphids/genetics , Biological Evolution , Ecotype , Genome, Insect , Introduced Species , Alleles , Animals , Polymorphism, Single Nucleotide , United States
4.
Insect Biochem Mol Biol ; 113: 103208, 2019 10.
Article in English | MEDLINE | ID: mdl-31422150

ABSTRACT

The complete mitochondrial genome of the soybean aphid (Aphis glycines Matsumura), a major agricultural pest in the world, is described for the first time, which consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, as well as a large repeat region between tRNA-Glu and tRNA-Phe, and an AT-rich control region. The 17,954 bp mtgenome is the largest reported from the family Aphididae, and its gene order follows the ancestral insect mtgenome except for the repeat region, which contains a 195 bp unit repeated 11.9 times, representing the highest reported repeats among the known aphid mtgenomes to date. A new molecular phylogeny of Aphidae is reconstructed based on all available aphid mtgenomes, and it is shown that the mtgenome data can robustly resolve relationships at the subfamily level, but do not have sufficient phylogenetic information to resolve deep relationships. A phylogeny-based comparative analysis of mtgenomes has been performed to investigate the evolution of the repeat region between tRNA-Glu and tRNA-Phe. So far, among aphids, 13 species are known to have this repeat region of variable lengths, and a phylogenetic analysis of the repeat region shows that a large proportion of the sequences are conserved across the phylogeny, suggesting that the repeat region evolved in the most recent common ancestor of Aphidinae and Eriosomatinae, and that it has gone through numerous episodes of lineage-specific losses and expansions. Combined together, this study provides novel insights into how the repeat regions have evolved within aphids.


Subject(s)
Aphids/genetics , Evolution, Molecular , Genome, Insect , Genome, Mitochondrial , Animals , Phylogeny
6.
PLoS Genet ; 12(4): e1005954, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27082250

ABSTRACT

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Subject(s)
Bass/genetics , Chromosome Mapping , Animals , Bass/classification , Genome , In Situ Hybridization, Fluorescence , Phylogeny
7.
Nature ; 532(7599): 329-33, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27027282

ABSTRACT

It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.


Subject(s)
Adenine/analogs & derivatives , DNA Methylation , Epigenesis, Genetic/genetics , Mouse Embryonic Stem Cells/metabolism , Adenine/metabolism , AlkB Homolog 1, Histone H2a Dioxygenase , Animals , Cell Differentiation/genetics , DNA Transposable Elements/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/deficiency , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Enhancer Elements, Genetic/genetics , Evolution, Molecular , Gene Silencing , Long Interspersed Nucleotide Elements/genetics , Mammals/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Up-Regulation/genetics , X Chromosome/genetics , X Chromosome/metabolism
8.
Genome Res ; 24(4): 688-96, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24418700

ABSTRACT

Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Genome, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Animals , Chromosomes, Artificial, Bacterial/genetics , Humans , Mice , Molecular Sequence Data , Pan troglodytes/genetics
9.
PLoS One ; 7(4): e34267, 2012.
Article in English | MEDLINE | ID: mdl-22509285

ABSTRACT

Although a few hundred single nucleotide polymorphisms (SNPs) suffice to infer close familial relationships, high density genome-wide SNP data make possible the inference of more distant relationships such as 2(nd) to 9(th) cousinships. In order to characterize the relationship between genetic similarity and degree of kinship given a timeframe of 100-300 years, we analyzed the sharing of DNA inferred to be identical by descent (IBD) in a subset of individuals from the 23andMe customer database (n = 22,757) and from the Human Genome Diversity Panel (HGDP-CEPH, n = 952). With data from 121 populations, we show that the average amount of DNA shared IBD in most ethnolinguistically-defined populations, for example Native American groups, Finns and Ashkenazi Jews, differs from continentally-defined populations by several orders of magnitude. Via extensive pedigree-based simulations, we determined bounds for predicted degrees of relationship given the amount of genomic IBD sharing in both endogamous and 'unrelated' population samples. Using these bounds as a guide, we detected tens of thousands of 2(nd) to 9(th) degree cousin pairs within a heterogenous set of 5,000 Europeans. The ubiquity of distant relatives, detected via IBD segments, in both ethnolinguistic populations and in large 'unrelated' populations samples has important implications for genetic genealogy, forensics and genotype/phenotype mapping studies.


Subject(s)
Computational Biology , Genome, Human/genetics , Phylogeny , Base Sequence , Evolution, Molecular , Female , Genetic Variation/genetics , Homozygote , Humans , Male , Pedigree , Polymorphism, Single Nucleotide/genetics
10.
Proc Natl Acad Sci U S A ; 108(13): 5154-62, 2011 Mar 29.
Article in English | MEDLINE | ID: mdl-21383195

ABSTRACT

Africa is inferred to be the continent of origin for all modern human populations, but the details of human prehistory and evolution in Africa remain largely obscure owing to the complex histories of hundreds of distinct populations. We present data for more than 580,000 SNPs for several hunter-gatherer populations: the Hadza and Sandawe of Tanzania, and the ≠Khomani Bushmen of South Africa, including speakers of the nearly extinct N|u language. We find that African hunter-gatherer populations today remain highly differentiated, encompassing major components of variation that are not found in other African populations. Hunter-gatherer populations also tend to have the lowest levels of genome-wide linkage disequilibrium among 27 African populations. We analyzed geographic patterns of linkage disequilibrium and population differentiation, as measured by F(ST), in Africa. The observed patterns are consistent with an origin of modern humans in southern Africa rather than eastern Africa, as is generally assumed. Additionally, genetic variation in African hunter-gatherer populations has been significantly affected by interaction with farmers and herders over the past 5,000 y, through both severe population bottlenecks and sex-biased migration. However, African hunter-gatherer populations continue to maintain the highest levels of genetic diversity in the world.


Subject(s)
Biological Evolution , Black People/genetics , Genetic Variation , Genetics, Population , Polymorphism, Single Nucleotide , Africa , Culture , Ethnicity/genetics , Genome, Human , Humans , Linkage Disequilibrium
11.
PLoS Genet ; 6(6): e1000993, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20585627

ABSTRACT

Despite the recent rapid growth in genome-wide data, much of human variation remains entirely unexplained. A significant challenge in the pursuit of the genetic basis for variation in common human traits is the efficient, coordinated collection of genotype and phenotype data. We have developed a novel research framework that facilitates the parallel study of a wide assortment of traits within a single cohort. The approach takes advantage of the interactivity of the Web both to gather data and to present genetic information to research participants, while taking care to correct for the population structure inherent to this study design. Here we report initial results from a participant-driven study of 22 traits. Replications of associations (in the genes OCA2, HERC2, SLC45A2, SLC24A4, IRF4, TYR, TYRP1, ASIP, and MC1R) for hair color, eye color, and freckling validate the Web-based, self-reporting paradigm. The identification of novel associations for hair morphology (rs17646946, near TCHH; rs7349332, near WNT10A; and rs1556547, near OFCC1), freckling (rs2153271, in BNC2), the ability to smell the methanethiol produced after eating asparagus (rs4481887, near OR2M7), and photic sneeze reflex (rs10427255, near ZEB2, and rs11856995, near NR2F2) illustrates the power of the approach.


Subject(s)
Genetic Variation , Genome-Wide Association Study/methods , Chromosomes, Human , Genomics , Genotype , Hair , Humans , Internet , Models, Genetic , Phenotype
12.
BMC Med Genomics ; 2: 21, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19419571

ABSTRACT

BACKGROUND: DNA copy number alterations are frequently observed in ovarian cancer, but it remains a challenge to identify the most relevant alterations and the specific causal genes in those regions. METHODS: We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified the most statistically significant minimal genomic regions with the most prevalent and highest-level copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal ovary samples was used to select genes with CNA-specific expression patterns. A public expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type mixture biases. RESULTS: Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17, 18, 22 and most prevalently on X and 8. Copy number and expression data suggest several apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were identified on chromosomes 1, 2, 3, 5, 8, 10, 12, 15, 17, 19, and 20, with the most prevalent gains localized to 8q and 3q. Within the 8q amplicon, PVT1, but not MYC, was strongly over-expressed relative to tumors lacking this CNA and showed over-expression relative to normal ovary. Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression. CONCLUSION: These analyses provide detailed views of ovarian cancer genomic changes and highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific expression changes.

13.
Hum Mutat ; 30(1): 99-106, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18570327

ABSTRACT

Signal peptides are N-terminal sequences that mediate the targeting and translocation of secreted or cell-surface proteins to the endoplasmic reticulum (ER) membrane. Because of the variability among signal peptides, traditional methods for predicting the effects of an amino acid substitution based on sequence conservation methods may be limited in their use. To address this, we present a scoring function that assesses the effects of an amino acid change within the signal peptide by using data from SignalP, a signal peptide prediction algorithm. Our score incorporates the maximum alterations of the C- and S-scores from SignalP between original and changed versions of the signal peptide. We demonstrate that this metric can discriminate disease-associated mutations from single nucleotide polymorphisms (SNPs) in signal peptides. We further show that polymorphisms with low minor allele frequency (MAF) are more likely to affect the function of the signal peptide. In conjunction with Sorting Intolerant From Tolerant (SIFT), a conservation-based amino acid substitution prediction method, our approach classifies such changes to signal peptides more accurately than other known alternatives, including D-score-based methods. We also examine experimentally characterized mutations and find that our metric minimizes false positives and can predict whether the mutation will affect cleavage or translocation. Finally, we apply our approach to a set of recently produced large-scale cancer somatic mutations from colon and breast cancers and generate a prioritized list of mutations in signal peptides that might impair protein function.


Subject(s)
Amino Acid Substitution , Computational Biology/methods , Protein Sorting Signals/genetics , Algorithms , Animals , Databases, Protein , Humans
14.
Genome Biol ; 8(8): R166, 2007.
Article in English | MEDLINE | ID: mdl-17697356

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs that bind mRNA target transcripts and repress gene expression. They have been implicated in multiple diseases, such as cancer, but the mechanisms of this involvement are not well understood. Given the complexity and degree of interactions between miRNAs and target genes, understanding how miRNAs achieve their specificity is important to understanding miRNA function and identifying their role in disease. RESULTS: Here we report factors that influence miRNA regulation by considering the effects of both single and multiple miRNAs targeting human genes. In the case of single miRNA targeting, we developed a metric that integrates miRNA and mRNA expression data to calculate how changes in miRNA expression affect target mRNA expression. Using the metric, our global analysis shows that the repression of a given miRNA on a target mRNA is modulated by 3' untranslated region length, the number of target sites, and the distance between a pair of binding sites. Additionally, we show that some miRNAs preferentially repress transcripts with longer CTG repeats, suggesting a possible role for miRNAs in repeat expansion disorders such as myotonic dystrophy. We also examine the large class of genes targeted by multiple miRNAs and show that specific types of genes are progressively more enriched as the number of targeting miRNAs increases. Expression microarray data further show that these highly targeted genes are downregulated relative to genes targeted by few miRNAs, which suggests that highly targeted genes are tightly regulated and that their dysregulation may lead to disease. In support of this idea, cancer genes are strongly enriched among highly targeted genes. CONCLUSION: Our data show that the rules governing miRNA targeting are complex, but that understanding the mechanisms that drive such control can uncover miRNAs' role in disease. Our study suggests that the number and arrangement of miRNA recognition sites can influence the degree and specificity of miRNA-mediated gene repression.


Subject(s)
Down-Regulation , Gene Expression Regulation , MicroRNAs/metabolism , Animals , Base Sequence , Binding Sites , Dogs , Humans , Mice , Molecular Sequence Data , Rats
15.
Nucleic Acids Res ; 35(Web Server issue): W152-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17545196

ABSTRACT

GeneHub-GEPIS is a web application that performs digital expression analysis in human and mouse tissues based on an integrated gene database. Using aggregated expressed sequence tag (EST) library information and EST counts, the application calculates the normalized gene expression levels across a large panel of normal and tumor tissues, thus providing rapid expression profiling for a given gene. The backend GeneHub component of the application contains pre-defined gene structures derived from mRNA transcript sequences from major databases and includes extensive cross references for commonly used gene identifiers. ESTs are then linked to genes based on their precise genomic locations as determined by GMAP. This genome-based approach reduces incorrect matches between ESTs and genes, thus minimizing the noise seen with previous tools. In addition, the gene-centric design makes it possible to add several important features, including text searching capabilities, the ability to accept diverse input values, expression analysis for microRNAs, basic gene annotation, batch analysis and linking between mouse and human genes. GeneHub-GEPIS is available at http://www.cgl.ucsf.edu/Research/genentech/genehub-gepis/ or http://www.gepis.org/.


Subject(s)
Algorithms , Chromosome Mapping/methods , Gene Expression Profiling/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Software , User-Computer Interface , Biomarkers, Tumor/genetics , Expressed Sequence Tags , Genetic Testing/methods , Humans , Internet , Neoplasms/diagnosis , Online Systems , Sequence Alignment/methods
16.
Bioinformatics ; 22(9): 1047-54, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16455748

ABSTRACT

MOTIVATION: We present a novel algorithm, MaMF, for identifying transcription factor (TF) binding site motifs. The method is deterministic and depends on an indexing technique to optimize the search process. On common yeast datasets, MaMF performs competitively with other methods. We also present results on a challenging group of eight sets of human genes known to be responsive to a diverse group of TFs. In every case, MaMF finds the annotated motif among the top scoring putative motifs. We compared MaMF against other motif finders on a larger human group of 21 gene sets and found that MaMF performs better than other algorithms. We analyzed the remaining high scoring motifs and show that many correspond to other TFs that are known to co-occur with the annotated TF motifs. The significant and frequent presence of co-occurring transcription factor binding sites explains in part the difficulty of human motif finding. MaMF is a very fast algorithm, suitable for application to large numbers of interesting gene sets.


Subject(s)
Algorithms , Chromosome Mapping/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Transcription Factors/chemistry , Transcription Factors/genetics , Amino Acid Motifs , Base Sequence , Genome, Human , Humans , Molecular Sequence Data
17.
J Mol Biol ; 332(2): 305-10, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12948482

ABSTRACT

A sequence similarity metric operating on 10 kb upstream regions of gene pairs quantitatively predicts a portion of co-variation of expression of gene pairs in large-scale gene expression studies in human tumors and tumor-derived cell lines. The signal on which the metric depends most strongly originates in the compositional structure of repetitive genomic sequences (particularly Alu elements) present in these upstream regions. This effect is completely separable from effects of isochore composition on gene expression. The results implicate repetitive elements with some functional role in transcriptional regulation of the specific genes in whose promoter regions they reside and lend credence to suggestions that the general phenomenon of repetitive element insertions may be a fundamental evolutionary mechanism for modulating gene transcription.


Subject(s)
DNA/chemistry , Gene Expression Regulation , Repetitive Sequences, Amino Acid , Base Composition , DNA/genetics , Humans , Oligonucleotide Array Sequence Analysis , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...