Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 36(5): 687-8, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368949

ABSTRACT

Silica-clad optical fibers comprising a core of crystalline germanium were drawn using a molten core technique. With respect to previous fibers drawn using a borosilicate cladding, the present fibers exhibit negligible oxygen despite being fabricated at more than twice the melting point of the germanium. The counterintuitive result of less oxygen when the fiber is drawn at a higher temperatures is discussed. The measured propagation loss for the fiber was 0.7 dB/cm at 3.39 µm, which is the lowest loss reported to date.

2.
Opt Express ; 17(10): 8029-35, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19434134

ABSTRACT

Long lengths (250 meters) of a flexible 150 microm diameter glass-clad optical fiber containing a 15 microm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the core to be very highly crystalline germanium with no observed secondary phases. Elemental analysis confirmed a very well-defined core-clad interface with a step-profile in composition and nominally 4 weight-percent oxygen having diffused into the germanium core from the glass cladding. For this proof-of-concept fiber, polycrystalline n-type germanium of unknown dopant concentration was used. The measured infrared transparency of the starting material was poor and, as a likely outcome, the attenuation of the resultant fiber was too high to be measured. However, the larger Raman cross-section, infrared and terahertz transparency of germanium over silicon should make these fibers of significant value for fiber-based mid- to long-wave infrared and terahertz waveguides and Raman-shifted infrared light sources once high-purity, high-resistivity germanium is employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...