Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 22(1): e137803, 2023.
Article in English | MEDLINE | ID: mdl-38444710

ABSTRACT

Background: Tissue engineering is the application system that tries to restore damaged tissues by different approaches, such as cellular therapy, application of cell differential factors, and various materials. One of the important goals in tissue engineering is to guide stem cells directly to the desired tissue, and researchers tried to utilize different molecules as effective factors to improve this technique. Objectives: This study aims to demonstrate the effects of diacerein, a slow-acting drug for the treatment of osteoarthritis, on mesenchymal stem cell proliferation and evaluate its potential in the chondrogenesis process. Methods: Stem cells were isolated from adipose tissue, characterized by flow cytometry, and cells were treated with 10-5M diacerein for three weeks. Chondrogenic gene expression of SOX9, COL2A1, ACAN, and TGFB1 were analyzed by qRT-PCR and immunocytochemistry techniques. Results: Our results showed that diacerein increased the expression of the following genes involved in chondrogenesis: SOX9 (2.9-fold, P < 0.00), COL2A1 (2.2-fold, P < 0.00), ACAN (2.7-fold, P < 0.00), and TGFB1 (2.6-fold, P < 0.00). Immunocytochemistry results also showed increased production of collagen type II as the main protein marker for chondrocytes. Conclusions: We observed that diacerein alone could initiate and enhance chondrogenesis, and it can be used as a differentiation factor for stem cells to chondrocyte besides its ability to inhibit IL-1ß. Knowing the actual function of diacerein, it could be a good candidate for the treatment of osteoarthritis.

2.
J Biomed Mater Res A ; 107(1): 38-48, 2019 01.
Article in English | MEDLINE | ID: mdl-30408321

ABSTRACT

Tissue engineering is a new technique to help damaged cartilage treatment using cells and scaffolds. In this study we tried to evaluate electrospun scaffolds composed of gelatin/glycosaminoglycan (G/GAG) blend nanofibers in chondrogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). Scaffolds were fabricated by electrospinning technique with different concentration of glycosaminoglycan (0%, 5%, 10%, and 15%) in gelatin matrix. BMMSCs were cultured on the scaffolds for chondrogenesis process. MTT assay was done for scaffold's biocompatibility and cells viability evaluation. Alcian blue staining was carried out to determine the release of GAG and reverse transcription polymerase chain reaction (RT-PCR) was done for expression of COL2A1 and also immunocytochemistry assay were used to confirm expression of type II collagen. Scaffold with 15% GAG showed better result for biocompatibility (p =0.02). Scanning electron microscopy (SEM) micrographs showed that MSCs have good attachment to the scaffolds. Alcian blue staining result confirmed that cells produce GAG during differentiation time different from GAG in the scaffolds. Also the results for RT-PCR showed the expression of COL2A1 marker. Immunocytochemistry assay for type II collagen confirm that this protein expressed. Scaffold comprising 15% GAG is better results for chondrogenesis and it can be a good applicant for cartilage tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 38-48, 2019.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Gelatin , Glycosaminoglycans , Mesenchymal Stem Cells/metabolism , Nanofibers/chemistry , Bone Marrow Cells/cytology , Gelatin/chemistry , Gelatin/pharmacology , Glycosaminoglycans/chemistry , Glycosaminoglycans/pharmacology , Humans , Materials Testing , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...