Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cells ; 11(5)2022 03 06.
Article in English | MEDLINE | ID: mdl-35269528

ABSTRACT

Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of α-synuclein exist, including phosphorylated and nitrated forms. It is unclear which α-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant α-synuclein PTMs in postmortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three α-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-affected regions of 15 IPD cases, 5 MSA cases, and 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 α-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures, followed by nY39 α-synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 α-synuclein in MSA. Quantification of the LB scores revealed that pS129 α-synuclein was the dominant and earliest α-synuclein PTM, followed by nY39 α-synuclein, while lower amounts of pSer87 α-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments.


Subject(s)
Multiple System Atrophy , Parkinson Disease , alpha-Synuclein/metabolism , Antibodies , Humans , Inclusion Bodies , Lewy Bodies , Multiple System Atrophy/pathology , Parkinson Disease/pathology
2.
Nature ; 594(7861): 117-123, 2021 06.
Article in English | MEDLINE | ID: mdl-34012113

ABSTRACT

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Subject(s)
Protein Biosynthesis/genetics , Proteostasis/genetics , RNA, Antisense/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Animals , Binding Sites , Brain/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Disease Progression , Female , Humans , Internal Ribosome Entry Sites/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Ribosomes/metabolism , tau Proteins/biosynthesis
3.
Mol Neurobiol ; 58(4): 1769-1781, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33387303

ABSTRACT

We have previously shown that the expression of nicotinamide N-methyltransferase (NNMT) is significantly increased in the brains of patients who have died of Parkinson's disease (PD). In this study, we have compared the expression of NNMT in post-mortem medial temporal lobe, hippocampus and cerebellum of 10 Alzheimer's disease (AD) and 9 non-disease control subjects using a combination of quantitative Western blotting, immunohistochemistry and dual-label confocal microscopy coupled with quantitative analysis of colocalisation. NNMT was detected as a single protein of 29 kDa in both AD and non-disease control brains, which was significantly increased in AD medial temporal lobe compared to non-disease controls (7.5-fold, P < 0.026). There was no significant difference in expression in the cerebellum (P = 0.91). NNMT expression in AD medial temporal lobe and hippocampus was present in cholinergic neurones with no glial localisation. Cell-type expression was identical in both non-disease control and AD tissues. These results are the first to show, in a proof-of-concept study using a small patient cohort, that NNMT protein expression is increased in the AD brain and is present in neurones which degenerate in AD. These results suggest that the elevation of NNMT may be a common feature of many neurodegenerative diseases. Confirmation of this overexpression using a larger AD patient cohort will drive the future development of NNMT-targetting therapeutics which may slow or stop the disease pathogenesis, in contrast to current therapies which solely address AD symptoms.


Subject(s)
Alzheimer Disease/enzymology , Nicotinamide N-Methyltransferase/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Case-Control Studies , Cerebellum/enzymology , Cerebellum/pathology , Female , Hippocampus/enzymology , Hippocampus/pathology , Humans , Male , Middle Aged , Neurons/enzymology , Neurons/pathology , Temporal Lobe/enzymology , Temporal Lobe/pathology
4.
J Neurochem ; 135(6): 1242-56, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26375402

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21-activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21-activated kinases are serine-threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post-mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock-out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2-mediated pathophysiology. We propose p21-activated kinase 6 (PAK6) as a novel interactor of leucine-rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2-linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.


Subject(s)
Actin Cytoskeleton/metabolism , Leucine/genetics , Neurites/metabolism , Protein Serine-Threonine Kinases/genetics , p21-Activated Kinases/genetics , Animals , Brain/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mammals/metabolism , Mice , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , p21-Activated Kinases/metabolism
6.
Neurobiol Aging ; 35(6): 1514.e1-12, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24503276

ABSTRACT

Progressive supranuclear palsy is a rare parkinsonian disorder with characteristic neurofibrillary pathology consisting of hyperphosphorylated tau protein. Common variation defining the microtubule associated protein tau gene (MAPT) H1 haplotype strongly contributes to disease risk. A recent genome-wide association study (GWAS) revealed 3 novel risk loci on chromosomes 1, 2, and 3 that primarily implicate STX6, EIF2AK3, and MOBP, respectively. Genetic associations, however, rarely lead to direct identification of the relevant functional allele. More often, they are in linkage disequilibrium with the causative polymorphism(s) that could be a coding change or affect gene expression regulatory motifs. To identify any such changes, we sequenced all coding exons of those genes directly implicated by the associations in progressive supranuclear palsy cases and analyzed regional gene expression data from control brains to identify expression quantitative trait loci within 1 Mb of the risk loci. Although we did not find any coding variants underlying the associations, GWAS-associated single-nucleotide polymorphisms at these loci are in complete linkage disequilibrium with haplotypes that completely overlap with the respective genes. Although implication of EIF2AK3 and MOBP could not be fully assessed, we show that the GWAS single-nucleotide polymorphism rs1411478 (STX6) is a strong expression quantitative trait locus with significantly lower expression of STX6 in white matter in carriers of the risk allele.


Subject(s)
Gene Expression/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Supranuclear Palsy, Progressive/genetics , Chromosomes, Human/genetics , Exons/genetics , Haplotypes , Humans , Linkage Disequilibrium , Myelin Proteins/genetics , Polymorphism, Single Nucleotide , Qa-SNARE Proteins/genetics , Risk , eIF-2 Kinase/genetics , tau Proteins/genetics
7.
J Neurochem ; 123(3): 396-405, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22862741

ABSTRACT

Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration-tau (FTDP-17/FTLD-tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP-17 cause elevation of tau isoforms with four microtubule-binding repeat domains (4R-tau) compared to those with three repeats (3R-tau). On the basis of two well-characterised monoclonal antibodies against 3R- and 4R-tau, we developed novel, sensitive immuno-PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (n = 46), corticobasal syndrome (CBS; n = 22), AD (n = 11), Parkinson's disease with dementia (PDD; n = 16) and 35 controls revealed selective decreases of immunoreactive 4R-tau in CSF of PSP and AD patients compared with controls, and lower 4R-tau levels in AD compared with PDD. These decreases could be related to the disease-specific conformational masking of the RD4-binding epitope because of abnormal folding and/or aggregation of the 4R-tau isoforms in tauopathies or increased sequestration of the 4R-tau isoforms in brain tau pathology.


Subject(s)
Immunoassay/methods , Polymerase Chain Reaction/methods , Repetitive Sequences, Amino Acid , Tauopathies/metabolism , tau Proteins/cerebrospinal fluid , Aged , Cohort Studies , Homeostasis/genetics , Homeostasis/immunology , Humans , Immunoassay/standards , Middle Aged , Polymerase Chain Reaction/standards , Protein Isoforms/cerebrospinal fluid , Protein Isoforms/genetics , Protein Isoforms/immunology , Repetitive Sequences, Amino Acid/genetics , Repetitive Sequences, Amino Acid/immunology , Reproducibility of Results , Tauopathies/cerebrospinal fluid , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/immunology
8.
Acta Neuropathol ; 122(4): 415-28, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21773886

ABSTRACT

A number of recent studies have described cases with tau-positive globular oligodendroglial inclusions (GOIs) and such cases have overlapping pathological features with progressive supranuclear palsy (PSP), but present with clinical features of motor neuron disease (MND) and/or frontotemporal dementia (FTD). These two clinical phenotypes have been published independently and as a result, have come to be considered as distinct disease entities. We describe the clinicopathological and biochemical features of two cases with GOIs: one with clinical symptoms suggestive of MND and the other with FTD. Histological changes in our two cases were consistent with their clinical symptoms; the MND case had severe neurodegeneration in the primary motor cortex and corticospinal tract, whereas the FTD case had severe involvement of the frontotemporal cortices and associated white matter. Immunohistochemistry in both cases revealed significant 4-repeat (4R) tau pathology primarily in the form of GOIs, but also in astrocytes and neurons. Astrocytic tau pathology was morphologically similar to that seen in PSP, but in contrast was consistently negative for Gallyas silver staining. Tau-specific western blotting revealed 68, 64 and 35 kDa bands, showing further overlap with PSP. The underlying neuropathological features of these two cases were similar, with the major difference relating to the regional distribution of pathology and resulting clinical symptoms and signs. The globular nature of glial inclusions and the non-fibrillar properties of tau in astrocytes are characteristic features that allow them to be distinguished from PSP and other tauopathies. We, therefore, propose the term globular glial tauopathy as an encompassing term to classify this emerging class of 4R tauopathy.


Subject(s)
Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/pathology , Motor Neuron Disease/diagnosis , Motor Neuron Disease/pathology , Oligodendroglia/pathology , Tauopathies/diagnosis , Tauopathies/pathology , Trinucleotide Repeat Expansion/genetics , Aged , Diagnosis, Differential , Fatal Outcome , Female , Frontotemporal Dementia/genetics , Humans , Male , Motor Neuron Disease/genetics , Tauopathies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...