Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 834: 155294, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447174

ABSTRACT

Designing cities for thermal comfort is an important priority in a warming and urbanizing world. As temperatures in cities continue to break extreme heat records, it is necessary to develop and test new approaches capable of tracking human thermal sensations influenced by microclimate conditions, complex urban geometries, and individual characteristics in dynamic settings. Thermal walks are a promising novel research method to address this gap. During a thermal walk in Phoenix, Arizona, USA, we examined relationships between the built environment, microclimate, and subjective thermal judgments across a downtown city neighborhood slated for redevelopment. Subjects equipped with GPS devices participated in a 1-hour walk on a hot sunny day and recorded their experience in a field guide. Microclimate measurements were simultaneously collected using the mobile human-biometeorological instrument platform MaRTy. Results revealed significant differences in physiologically equivalent temperature (PET) and modified physiologically equivalent temperature (mPET) and between street segments with more than 18 °C (25 °C mPET) between the maximum and minimum values. Wider range of mPET values reflected the inclusion of individual level data into the model. Streets with higher sky view factor (SVF) and east-west orientation showed a higher PET and mPET overall. Furthermore, we showed evidence of thermal alliesthesia, the pleasure resulting from slight changes in microclimate conditions. Participants' sense of pleasure was related to the mean PET of the segment they just walked, with linear regression explaining over 60% of the variability. We also showed that estimated percent shade was significantly correlated with SVF, PET, mPET, and pleasure, indicating that participants could sense minor changes in microclimate and perceived shade as pleasant. Although generalization of results is limited by a low sample size, findings of this study improve the understanding of dynamic thermal comfort in complex urban environments and highlight the value of thermal walks as a robust research method.


Subject(s)
Interoception , Cities , Hot Temperature , Humans , Microclimate , Temperature , Thermosensing
2.
Nat Clim Chang ; 11(6): 492-500, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34221128

ABSTRACT

Climate change affects human health; however, there have been no large-scale, systematic efforts to quantify the heat-related human health impacts that have already occurred due to climate change. Here, we use empirical data from 732 locations in 43 countries to estimate the mortality burdens associated with the additional heat exposure that has resulted from recent human-induced warming, during the period 1991-2018. Across all study countries, we find that 37.0% (range 20.5-76.3%) of warm-season heat-related deaths can be attributed to anthropogenic climate change and that increased mortality is evident on every continent. Burdens varied geographically but were of the order of dozens to hundreds of deaths per year in many locations. Our findings support the urgent need for more ambitious mitigation and adaptation strategies to minimize the public health impacts of climate change.

3.
Int J Biometeorol ; 59(10): 1363-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25567543

ABSTRACT

Urban environmental health hazards, including exposure to extreme heat, have become increasingly important to understand in light of ongoing climate change and urbanization. In cities, neighborhoods are often considered a homogenous and appropriate unit with which to assess heat risk. This manuscript presents results from a pilot study examining the variability of individually experienced temperatures (IETs) within a single urban neighborhood. In July 2013, 23 research participants were recruited from the South End neighborhood of Boston and equipped with Thermochron iButtons that measured the air temperatures surrounding individuals as they went about their daily lives. IETs were measured during a heat wave period (July 17-20), which included 2 days with excessive heat warnings and 1 day with a heat advisory, as well as a reference period (July 20-23) in which temperatures were below seasonal averages. IETs were not homogeneous during the heat wave period; mean IETs were significantly different between participants (p < 0.001). The majority of participants recorded IETs significantly lower than outdoor ambient temperatures (OATs), and on average, the mean IET was 3.7 °C below the mean OAT. Compared with IETs during the reference period, IETs during the heat wave period were 1.0 °C higher. More than half of participants did not experience statistically different temperatures between the two test periods, despite the fact that the mean OAT was 6.5 °C higher during the heat wave period. The IET data collected for this sample and study period suggest that (1) heterogeneity in individual heat exposure exists within this neighborhood and that (2) outdoor temperatures misrepresent the mean experienced temperatures during a heat wave period. Individual differences in attributes (gender, race, socioeconomic status, etc.), behaviors (schedules, preferences, lifestyle, etc.), and access to resources are overlooked determinants of heat exposure and should be better integrated with group- and neighborhood-level characteristics. Understanding IETs for the population at large may lead to innovative advances in heat-health intervention and mitigation strategies.


Subject(s)
Hot Temperature , Thermosensing , Adult , Aged , Boston , Environmental Exposure , Female , Humans , Male , Middle Aged , Residence Characteristics
4.
Int J Biometeorol ; 58(2): 109-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23371289

ABSTRACT

This year marks the tenth anniversary of the development of the revised Spatial Synoptic Classification, the "SSC", by Scott Sheridan. This daily weather-type classification scheme has become one of the key analytical tools implemented in a diverse range of climatological investigations, including analysis of air quality variability, human health, vegetation growth, precipitation and snowfall trends, and broader analyses of historical and future climatic variability and trends. The continued and expanding use of the SSC motivates a review and comparison of the system's research and geographic foci to date, with the goal of identifying promising areas for future efforts, particularly within the context of human health and climate change. This review also assesses how the SSC has complemented and compares with other current environmental epidemiological studies in weather and health.


Subject(s)
Climate , Ecosystem , Environmental Monitoring/methods , Forecasting , Health Services Research/trends , Meteorology/trends , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...