Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Neurol ; 10: 627, 2019.
Article in English | MEDLINE | ID: mdl-31316447

ABSTRACT

Background: Whole-body vibration is commonly used in physical medicine and neuro-rehabilitation as a clinical prevention and rehabilitation tool. The goal of this systematic review is to assess the long-term effects of whole-body vibration training on gait in different populations of patients. Methods: We conducted a literature search in PubMed, Science Direct, Springer, Sage and in study references for articles published prior to 7 December 2018. We used the keywords "vibration," "gait" and "walk" in combination with their Medical Subject Headings (MeSH) terms. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was used. Only randomized controlled trials (RCT) published in English peer-reviewed journals were included. All patient categories were selected. The duration of Whole-Body Vibration (WBV) training had to be at least 4 weeks. The outcomes accepted could be clinical or biomechanical analysis. The selection procedure was conducted by two rehabilitation experts and disagreements were resolved by a third expert. Descriptive data regarding subjects, interventions, types of vibration, training parameters and main results on gait variables were collected and summarized in a descriptive table. The quality of selected studies was assessed using the PEDro scale. Statistical analysis was conducted to evaluate intergroup differences and changes after the WBV intervention compared to the pre-intervention status. The level of evidence was determined based on the results of meta-analysis (effect size), statistical heterogeneity (I 2) and methodological quality (PEDro scale). Results: A total of 859 studies were initially identified through databases with 46 articles meeting all of the inclusion criteria and thus selected for qualitative assessment. Twenty-five studies were included in meta-analysis for quantitative synthesis. In elderly subjects, small but significant improvements in the TUG test (SMD = -0.18; 95% CI: -0.32, -0.04) and the 10MWT (SMD = -0.28; 95% CI: -0.56, -0.01) were found in the WBV groups with a strong level of evidence (I 2 = 7%, p = 0.38 and I 2 = 22%, p = 0.28, respectively; PEDro scores ≥5/10). However, WBV failed to improve the 6MWT (SMD = 0.37; 95% CI: -0.03, 0.78) and the Tinetti gait scores (SMD = 0.04; 95% CI: -0.23, 0.31) in older adults. In stroke patients, significant improvement in the 6MWT (SMD = 0.33; 95% CI: 0.06, 0.59) was found after WBV interventions, with a strong level of evidence (I 2 = 0%, p = 0.58; PEDro score ≥5/10). On the other hand, there was no significant change in the TUG test despite a tendency toward improvement (SMD = -0.29; 95% CI: -0.60, 0.01). Results were inconsistent in COPD patients (I 2 = 66%, p = 0.03), leading to a conflicting level of evidence despite a significant improvement with a large effect size (SMD = 0.92; 95% CI: 0.32, 1.51) after WBV treatment. Similarly, the heterogeneous results in the TUG test (I 2 = 97%, p < 0.00001) in patients with knee osteoarthrosis make it impossible to draw a conclusion. Still, adding WBV treatment was effective in significantly improving the 6 MWT (SMD = 1.28; 95% CI: 0.57, 1.99), with a strong level of evidence (I 2 = 64%, p = 0.06; PEDro score ≥5/10). As in stroke, WBV failed to improve the results of the TUG test in multiple sclerosis patients (SMD = -0.11; 95% CI: -0.64, 0.43). Other outcomes presented moderate or even limited levels of evidence due to the lack of data in some studies or because only one RCT was identified in the review. Conclusions: WBV training can be effective for improving balance and gait speed in the elderly. The intervention is also effective in improving walking performance following stroke and in patients with knee osteoarthrosis. However, no effect was found on gait quality in the elderly or on balance in stroke and multiple sclerosis patients. The results are too heterogenous in COPD to conclude on the effect of the treatment. The results must be taken with caution due to the lack of data in some studies and the methodological heterogeneity in the interventions. Further research is needed to explore the possibility of establishing a standardized protocol targeting gait ability in a wide range of populations.

2.
Front Neurol ; 10: 352, 2019.
Article in English | MEDLINE | ID: mdl-31057474

ABSTRACT

Prior to gait initiation (GI), anticipatory postural adjustments (GI-APA) are activated in order to reorganize posture, favorably for gait. In healthy subjects, the center of pressure (CoP) is displaced backward during GI-APA, bilaterally by reducing soleus activities and activating the tibialis anterior (TA) muscles, and laterally in the direction of the leading leg, by activating hip abductors. In post-stroke hemiparetic patients, TA, soleus and hip abductor activities are impaired on the paretic side. Reduction in non-affected triceps surae activity can also be observed. These may result in a decreased ability to execute GI-APA and to generate propulsion forces during step execution. A systematic review was conducted to provide an overview of the reorganization which occurs in GI-APA following stroke as well as of the most effective strategies for tailoring gait-rehabilitation to these patients. Sixteen articles were included, providing gait data from a total of 220 patients. Stroke patients show a decrease in the TA activity associated with difficulties in silencing soleus muscle activity of the paretic leg, a decreased CoP shift, lower propulsive anterior forces and a longer preparatory phase. Regarding possible gait-rehabilitation strategies, the selected studies show that initiating gait with the paretic leg provides poor balance. The use of the non-paretic as the leading leg can be a useful exercise to stimulate the paretic postural muscles.

3.
World J Orthop ; 8(11): 815-828, 2017 Nov 18.
Article in English | MEDLINE | ID: mdl-29184756

ABSTRACT

It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.

4.
Front Hum Neurosci ; 11: 214, 2017.
Article in English | MEDLINE | ID: mdl-28503144

ABSTRACT

Rigid ankle-foot orthoses (AFO) are commonly used for impeding foot drop during the swing phase of gait. They also reduce pain and improve gait kinematics in patients with weakness or loss of integrity of ankle-foot complex structures due to various pathological conditions. However, this comes at the price of constraining ankle joint mobility, which might affect propulsive force generation and balance control. The present study examined the effects of wearing an AFO on biomechanical variables and electromyographic activity of tibialis anterior (TA) and soleus muscles during gait initiation (GI). Nineteen healthy adults participated in the study. They initiated gait at a self-paced speed with no ankle constraint as well as wearing an AFO on the stance leg, or bilaterally. Constraining the stance leg ankle decreased TA activity ipsilaterally during the anticipatory postural adjustment (APA) of GI, and ipsilateral soleus activity during step execution. In the sagittal plane, the decrease in the stance leg TA activity reduced the backward displacement of the center of pressure (CoP) resulting in a reduction of the forward velocity of the center of mass (CoM) measured at foot contact (FC). In the frontal plane, wearing the AFO reduced the displacement of the CoP in the direction of the swing leg during the APA phase. The mediolateral velocity of the CoM increased during single-stance prompting a larger step width to recover balance. During step execution, the CoM vertical downward velocity is normally reduced in order to lessen the impact of the swing leg with the floor and facilitates the rise of the CoM that occurs during the subsequent double-support phase. The reduction in stance leg soleus activity caused by constraining the ankle weakened the vertical braking of the CoM during step execution. This caused the absolute instantaneous vertical velocity of the CoM at FC to be greater in the constrained conditions with respect to the control condition. From a rehabilitation perspective, passively- or actively-powered assistive AFOs could correct for the reduction in muscle activity and enhance balance control during GI of patients.

5.
Cerebellum ; 16(1): 1-14, 2017 02.
Article in English | MEDLINE | ID: mdl-26780373

ABSTRACT

Balance stability correlates with cerebellar vermis volume. Furthermore, the cerebellum is involved in precise timing of motor processes by fine-tuning the sensorimotor integration. We tested the hypothesis that any cerebellar action in stance control and in timing of visuomotor integration for balance is impaired by continuous theta-burst stimulation (cTBS) of the vermis. Ten subjects stood quietly and underwent six sequences of 10-min acquisition of center of foot pressure (CoP) data after cTBS, sham stimulation, and no stimulation. Visual shifts from eyes closed (EC) to eyes open (EO) and vice versa were presented via electronic goggles. Mean anteroposterior and mediolateral CoP position and oscillation, and the time delay at which body sway changed after visual shift were calculated. CoP position under both EC and EO condition was not modified after cTBS. Sway path length was greater with EC than EO and increased in both visual conditions after cTBS. CoP oscillation was also larger with EC and increased under both visual conditions after cTBS. The delay at which body oscillation changed after visual shift was longer after EC to EO than EO to EC, but unaffected by cTBS. The time constant of decrease or increase of oscillation was longer in EC to EO shifts, but unaffected by cTBS. Functional inactivation of the cerebellar vermis is associated with increased sway. Despite this, cTBS does not detectably modify onset and time course of the sensorimotor integration process of adaptation to visual shifts. Cerebellar vermis normally controls oscillation, but not timing of adaptation to abrupt changes in stabilizing information.


Subject(s)
Cerebellar Vermis/physiopathology , Postural Balance/physiology , Adult , Analysis of Variance , Eye Movement Measurements , Female , Humans , Male , Pressure , Time Factors , Transcranial Magnetic Stimulation , Visual Perception
6.
J Neurophysiol ; 117(2): 777-785, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27903641

ABSTRACT

The aim of this study was to test the effects of a concurrent cognitive task on the promptness of the sensorimotor integration and reweighting processes following addition and withdrawal of vision. Fourteen subjects stood in tandem while vision was passively added and removed. Subjects performed a cognitive task, consisting of counting backward in steps of three, or were "mentally idle." We estimated the time intervals following addition and withdrawal of vision at which body sway began to change. We also estimated the time constant of the exponential change in body oscillation until the new level of sway was reached, consistent with the current visual state. Under the mentally idle condition, mean latency was 0.67 and 0.46 s and the mean time constant was 1.27 and 0.59 s for vision addition and withdrawal, respectively. Following addition of vision, counting backward delayed the latency by about 300 ms, without affecting the time constant. Following withdrawal, counting backward had no significant effect on either latency or time constant. The extension by counting backward of the time interval to stabilization onset on addition of vision suggests a competition for allocation of cortical resources. Conversely, the absence of cognitive task effect on the rapid onset of destabilization on vision withdrawal, and on the relevant reweighting time course, advocates the intervention of a subcortical process. Diverting attention from a challenging standing task discloses a cortical supervision on the process of sensorimotor integration of new balance-stabilizing information. A subcortical process would instead organize the response to removal of the stabilizing sensory input.NEW & NOTEWORTHY This study is the first to test the effect of an arithmetic task on the time course of balance readjustment following visual withdrawal or addition. Performing such a cognitive task increases the time delay following addition of vision but has no effect on withdrawal dynamics. This suggests that sensorimotor integration following addition of a stabilizing signal is performed at a cortical level, whereas the response to its withdrawal is "automatic" and accomplished at a subcortical level.


Subject(s)
Adaptation, Physiological/physiology , Cognition/physiology , Feedback, Sensory/physiology , Postural Balance/physiology , Posture/physiology , Reaction Time/physiology , Adult , Analysis of Variance , Biological Clocks/physiology , Female , Humans , Male , Neuropsychological Tests , Young Adult
7.
Front Hum Neurosci ; 10: 445, 2016.
Article in English | MEDLINE | ID: mdl-27642280

ABSTRACT

Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all three conditions. Conclusively, coordinated activation of hip abductors and ankle dorsiflexors during APA displaces the CoP towards the swing leg, and sets the contact position for the swing foot.

9.
Exp Brain Res ; 234(3): 659-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26497990

ABSTRACT

This study explored the directional specificity of fear of falling (FoF) effects on the stabilizing function of anticipatory postural adjustments (APA). Participants (N = 71) performed a series of lateral leg raises from an elevated surface in three conditions: in the "Control condition", participants stood at the middle of the surface; in the two test conditions, participants were positioned at the lateral edge of the surface so that the shift of the whole-body centre-of-mass during APA for leg raising was directed towards the edge ("Approach condition") or was directed away from the edge ("Avoidance condition"). Results showed that the amplitude of APA was lower in the "Approach condition" than in the "Control condition" (p < .01); this reduction was compensated for by an increase in APA duration (p < .05), so that both postural stability and motor performance (in terms of peak leg velocity, final leg posture and movement duration) remained unchanged. These changes in APA parameters were not present in the "Avoidance condition". Participants further self-reported a greater FoF (p < .001) and a lower ability to avoid a fall (p < .001) in the "Approach condition" (but not in the "Avoidance condition") than in the "Control condition". The results of this study show that the effects of FoF do not solely depend on initial environmental conditions, but also on the direction of APA relative to the location of the postural threat. These results support the so-called Motivational Direction Hypothesis, according to which approach and avoidance behaviours are primed by emotional state.


Subject(s)
Anticipation, Psychological/physiology , Leg/physiology , Movement/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Female , Humans , Male , Young Adult
10.
J Neurophysiol ; 114(6): 3097-110, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26334013

ABSTRACT

We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs.


Subject(s)
Posture , Reaction Time , Touch Perception , Visual Perception , Adult , Brain/physiology , Female , Humans , Male
11.
Front Syst Neurosci ; 8: 190, 2014.
Article in English | MEDLINE | ID: mdl-25339872

ABSTRACT

Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices.

12.
Physiol Rep ; 2(2): e00229, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24744898

ABSTRACT

In the single-stance phase of gait, gravity acting on the center of mass (CoM) causes a disequilibrium torque, which generates propulsive force. Triceps surae activity resists gravity by restraining forward tibial rotation thereby tuning CoM momentum. We hypothesized that time and amplitude modulation of triceps surae activity determines the kinematics (step length and cadence) and kinetics of gait. Nineteen young subjects participated in two experiments. In the gait initiation (GI) protocol, subjects deliberately initiated walking at different velocities for the same step length. In the balance-recovery (BR) protocol, subjects executed steps of different length after being unexpectedly released from an inclined posture. Ground reaction force was recorded by a large force platform and electromyography of soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles was collected by wireless surface electrodes. In both protocols, the duration of triceps activity was highly correlated with single-stance duration (GI, R (2) = 0.68; BR, R (2) = 0.91). In turn, step length was highly correlated with single-stance duration (BR, R (2) = 0.70). Control of CoM momentum was obtained by decelerating the CoM fall via modulation of amplitude of triceps activity. By modulation of triceps activity, the central nervous system (CNS) varied the position of CoM with respect to the center of pressure (CoP). The CoM-CoP gap in the sagittal plane was determinant for setting the disequilibrium torque and thus walking velocity. Thus, by controlling the gap, CNS-modified walking velocity (GI, R (2) = 0.86; BR, R (2) = 0.92). This study is the first to highlight that by merely counteracting gravity, triceps activity sets the kinematics and kinetics of gait. It also provides evidence that the surge in triceps activity during fast walking is due to the increased requirement of braking the fall of CoM in late stance in order to perform a smoother step-to-step transition.

13.
Clin Neurophysiol ; 124(6): 1175-86, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23294550

ABSTRACT

OBJECTIVES: We investigated the pattern of activity of the tibialis anterior (TA), soleus (SOL) and peroneus longus (PER) muscles of both legs during tandem stance, in order to highlight their respective role in maintaining balance. METHODS: Twelve young healthy subjects were asked to stand with feet in line for successive 15s-epochs, on a dynamometric platform with (EO) and without (EC) vision. EMG was recorded from the six muscles simultaneously. Collected signals were displacement of the centre of feet pressure (CoP) and EMG. Variables calculated for each recorded epoch were mean level, variability and distribution between legs of EMG, and cross-correlation between EMG and CoP traces and between EMG of homonymous muscles. RESULTS: CoP motion was larger along the medio-lateral (M-L) than antero-posterior (A-P) axis, and larger with EC than EO particularly in the M-L axis. Muscle activity was larger in the rear than in the front leg, as expected, except for PER. Activity increased with the increase in M-L CoP oscillations, except for SOL, which was tonically active, both legs, regardless of the amplitude of the oscillations. Manipulating vision had no effect on the variability of the EMG for equal mean levels of activity, for any muscle. Cross-correlation between EMG of rear leg muscles and M-L CoP sway gave higher coefficients for TA and PER than SOL, and appropriate time-delays between TA or PER and CoP motion, indicating a role of these muscles in the control of M-L sway. Except for the tonically active SOL, the homonymous muscles of the two legs were active out-of-phase, indicating a mutual push-pull action of the pairs. This was confirmed by the reciprocal activation of TA and PER of the same leg. CONCLUSIONS: Overall, in spite of a large inter-trial and inter-subject variability, the neural command to the leg muscles during tandem stance implies a task-sharing rule, whereby SOL keeps the body upright while the reciprocal PER and TA activities produce the alternate impulses necessary for body stabilization in the frontal plane. SIGNIFICANCE: Knowledge of the normal mode of control of balance in frontal plane can foster new investigation in both posture and gait control, in addition to offering tools for understanding balance problems of elderly persons and patients at risk of fall.


Subject(s)
Leg/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Posture/physiology , Adult , Data Interpretation, Statistical , Electromyography , Feedback, Physiological , Female , Foot/physiology , Humans , Leg/innervation , Male , Muscle, Skeletal/innervation , Pressure , Vision, Ocular/physiology , Young Adult
14.
PLoS One ; 8(1): e52943, 2013.
Article in English | MEDLINE | ID: mdl-23341916

ABSTRACT

AIM: Despite numerous studies addressing the issue, it remains unclear whether the triceps surae muscle group generates forward propulsive force during gait, commonly identified as 'push-off'. In order to challenge the push-off postulate, one must probe the effect of varying the propulsive force while annulling the effect of the progression velocity. This can be obtained by adding a load to the subject while maintaining the same progression velocity. METHODS: Ten healthy subjects initiated gait in both unloaded and loaded conditions (about 30% of body weight attached at abdominal level), for two walking velocities, spontaneous and fast. Ground reaction force and EMG activity of soleus and gastrocnemius medialis and lateralis muscles of the stance leg were recorded. Centre of mass velocity and position, centre of pressure position, and disequilibrium torque were calculated. RESULTS: At spontaneous velocity, adding the load increased disequilibrium torque and propulsive force. However, load had no effect on the vertical braking force or amplitude of triceps activity. At fast progression velocity, disequilibrium torque, vertical braking force and triceps EMG increased with respect to spontaneous velocity. Still, adding the load did not further increase braking force or EMG. CONCLUSIONS: Triceps surae is not responsible for the generation of propulsive force but is merely supporting the body during walking and restraining it from falling. By controlling the disequilibrium torque, however, triceps can affect the propulsive force through the exchange of potential into kinetic energy.


Subject(s)
Locomotion/physiology , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena/physiology , Electromyography , Female , Gait/physiology , Humans , Male , Middle Aged , Time Factors , Torque , Walking/physiology , Weight-Bearing/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...